
vxBaseÔ

Copyright © 1991 by Comsoft Inc.
Visual Basic

xBase Functions for Windows 3.x

vxBase is Shareware, not freeware. After a thirty day evaluation
period, if you continue to use vxBase, you are required to register the
product and include a license fee of $49.95 by check, money order,
Visa, or Mastercard. A Registration Form may be found at the end of
this document. The License fee will entitle you to a registration code
(to be rid of the opening nagware) and the latest version of the
software.

If you distribute vxBase with your Visual Basic application, you
must distribute an unregistered copy of the software unless you
purchase a developer distribution license.

Developer Distribution Licenses
You may distribute an unlimited number of copies of vxBase with

your application by purchasing a developer distribution license for
$295.00 (less the shareware registration fee if already registered). This
license entitles you to a printed copy of the manual, the latest version
of the software, and a run time only version of vxbase.dll which is
distributed to the end user.

Please read the License Agreement and Limited Warranty found at
the back of this manual before you begin to use vxBase.

Current Documentation Changes
Existing vxBase 1.01 users may only wish to print the following

documentation changes and additions: Pages 6-8, 24-28, 32-35, 38-45,
81-82, 101-102, 120, 128-133, 149-150, 152, 155-164. Table of

contents will be invalid.

vxBase Page 2

Release Notes
Release 1.00 November 10, 1991
Release 1.01 November 19, 1991
Release 1.02 December 1, 1991

vxBase was written in Borland C++ by Terry Orletsky. Address inquiries
and bug reports (preferably Dr. Watson along with a listing of the
offending code) to
T.O.
Compuserve I.D. 70524, 3723

Comsoft Inc.
#208, 10335 - 172 Street
Edmonton, Alberta, Canada
T5S 1K9

Phone (403) 489-5994
Fax (403) 486-4335

Trademarks
Visual Basic and Windows are registered trademarks of Microsoft
Corporation.
Borland C++ is a registered trademark of Borland International.
Clipper is a registered trademark of Nantucket Corporation.

Acknowledgements
Thanks to Ray Donahue of Hamden, CT for his three dimensional
controls.

Testing
vxBase was written and tested extensively on a Pegasus 386

33mhz microcomputer with 8 megabytes of RAM, SVGA, and a 200
megabyte hard disk runnning Dos 5.0 and Windows 3.0 in Standard
mode. The sample application has been installed and successfully run
on a variety of 286 and 386 PCs.

Record and file locking routines were tested and verified on an 18-
station Novell 386 Netware LAN with 3 workstations running the
sample application concurrently.

Every effort has been made to conform to Windows standard
programming protocols, especially in the areas of memory
management and GUI routines.

If your hardware or LAN software differs significantly and vxBase
does not run properly, I would appreciate a Dr. Watson UAE report sent

vxBase Page 3

by fax or to my Compuserve address. Please describe your operating
environment in detail and include a listing of your config.sys file.

vxBase Page 4

vxBase Table of Contents

Installation 6
Release History 7
Creating a vxBase Application 9
xBase Expressions, Functions and Operators 10
 Compatibilities and Incompatibilities 10
 Expressions 10
 Constants 11
 Operators 12
 Numeric Operators 12
 Relational Operators 12
 Logical Operators 13
 Character (String) Operators 13
 Operator Precedence 13
 Functions 13
Sample Application 18
Tips and Techniques 23
 Entry and Exit Strategies 23
 Access to Form Menus 23
 Data Entry 23
 Parents for vxBase Windows 24
 Data Paths 24
 Controlling Multiple Windows 24
 DataWorks 24
MultiTasking and MultiUser Considerations 25

Functions
vxAppendBlank 29
vxAppendFrom 30
vxAreaDbf 32
vxAreaNtx 34
vxBof 36
vxBottom 37
vxBrowse 38
vxBrowseCase 45
vxChar 46
vxClose 47
vxCloseAll 48
vxCloseNtx 49
vxCopy 50
vxCopyStruc 51
vxCreateDbf 53
vxCreateNtx 55
vxCtlGrayReset 57

vxBase Page 5

Contents (continued)
vxCtlGraySet 58
vxCtlLength 59
vxCtlStyle 60
vxDateFormat 62
vxDbfName 63
vxDecimals 64
vxDeleted 65
vxDeleteRange 66
vxDeleteRec 67
vxDouble 69
vxEmpty 70
vxEof 71
vxExactOff 72
vxExactOn 73
vxField 74
vxFieldCount 75
vxFieldName 76
vxFieldSize 77
vxFieldType 78
vxFile 79
vxFilter 81
vxFilterReset 83
vxFormFrame 84
vxFound 85
vxGo 86
vxInteger 88
vxIsMemo 89
vxJoin 90
vxJoinReset 94
vxLockDbf 95
vxLocked 96
vxLockRecord 97
vxLong 98
vxMemoEdit 99
vxMemoRead 101
vxNtxDeselect 103
vxNtxExpr 104
vxNtxName 105
vxNumRecs 106
vxPack 107
vxRecall 108
vxRecNo 109
vxRecSize 110
vxReindex 111

vxBase Page 6

Contents (continued)
vxReplDate 112
vxReplDouble 114
vxReplInteger 116
vxReplLong 118
vxReplMemo 120
vxReplString 121
vxSeek 123
vxSeekSoft 126
vxSelectDbf 128
vxSelectNtx 130
vxSetErrorCaption 132
vxSetupPrinter 133
vxSkip 134
vxSum 136
vxTableDeclare 137
vxTableField 142
vxTableReset 144
vxTop 145
vxTrue 146
vxUnlock 147
vxUseDbf 149
vxUseNtx 151
vxWindowDereg 152
vxWrite 153
vxZap 154

Error Messages 155
Software License Agreement 163
Limited Warranty 165
Order Form 166

vxBase Page 7

Installation
vxBase is distributed on a single diskette or on bulletin boards as

two compressed .ZIP files. The first ZIP file is vxd102.zip, which
contains the Windows Write file that you are reading now. It is
separated from the rest of vxBase to allow potential users to preview
the documentation before installing and actually using vxBase. This is
especially helpful to potential users who extract vxBase from a bulletin
board. They can evaluate the system from a documentation standpoint
before committing to down-loading the larger system.

The second ZIP (vxb102.zip) file contains the sample source code
and Visual Basic project files, vxbase.txt which includes all of the Visual
Basic declarations for the routines in the vxBase DLL and the vxBase
DLL itself.

If you are going to upload vxBase to a bulletin board, it must be
sent as it was received - in two ZIP files.

When the system ZIP file is decompressed, it contains a
readme.doc file which contains these installation instructions, and 2
more ZIP files. These ZIP files are:

vxbdll.zip the vxBase DLL
vxbtest.zip sample source code, sample database,

and vxbase.txt

To install vxBase, first make a subdirectory under your \vb directory
named \vb\vxbtest and copy the vxbtest.zip file there. Unzip it and
delete the vxbtest.zip file from your hard disk. To run the sample
application it is essential that these files be in directory \vb\vxbtest
because this path is hard-coded into the sample code. If you MUST put
it somewhere else, you'll have to modify the file names in the source
code to reflect your new location.

Unzip vxbdll.zip and place the resulting file (VXBASE.DLL) in your \
windows directory.

To run the sample application see the Sample Application section
below.

vxBase Page 8

Release History

vxBase 1.00
November 10, 1991 original release

vxBase 1.01
November 19, 1991

String routines handled by Jonathan Zuck's vbpoint.dll replaced by
Microsoft VBAPI functions and installation procedure changed
accordingly.

New functions:
vxCtlGrayReset resets disabled color to system

standard
vxCtlGraySet sets disabled color to dark gray
vxCtlLength set data entry length for a control
vxCtlStyle set recessed, raised, creased contol

style
vxFormFrame draw a frame around the form

Most of the new functions have been added to enhance the
appearance of your VB application. VGA/SVGA users can now give their
forms a metallic, three dimensional look. The sample application forms
have been redesigned using the new functions.

Anomalies Discovered in Version 1.00
Two problems surfaced in Release 1.00. The first resulted in UAEs

when running Windows in 386-enhanced mode. This was a memory
deallocation error. Apparently 386-enhanced protected mode is more
protected than Standard protected mode. Go figure.

The second problem was the inadvertent deletion of a stock object
in the browse function. Problems caused by this bug were intermittent.

vxBase 1.02
December 1, 1991

New Functions:
vxBrowseCase Set browse case to upper or lower as

default

vxMemoRead Creates Vis Basic string out of a memo
either

unformatted for multiline text boxes or
formatted for printer output.

vxBase Page 9

vxReplMemo Replace memo with a Visual Basic
string. You

may now edit memos in your own text
boxes.

vxSetErrorCaption Set your own error message box
caption if you

want to replace the default "vxBase
Error".

vxSetupPrinter Allows direct access to Windows Print
Manager

setup routines. Especially useful for
changing

form sizes from your app instead of
having to

bring up the control panel.

vxWindowDereg Deregister a select area attached to a
window.

This is a new function that helps
implement the

vxBase multitasking scheme.

Important changes implemented include:
(1) up to 8 browse windows may be active at one time.

Reports reflecting your browse table layout may now be printed from
the vxBrowse Utilities menu.

(2) restriction on multiple instances removed.
(3) select areas are now attached to windows so you can

have multiple forms displaying data from several databases.
(4) indexing buffer space increased to handle very large files

with complex key structures.
(5) number of open index areas increased to 32 from 20.
(6) numer of open dbf files increased to 24 from 20.

Please read the new section on Multitasking to get some idea of the
way select areas are now attached to windows.

Anomalies Discovered in Version 1.01
UAEs browse windows with complex filter expressions. Stack

overflow problem corrected.

vxBase Page 10

Creating a vxBase Application
Your application requires the vxbase.txt file (which should be in

directory \vb\vxbtest if you followed the installation instructions)
placed in the Global module. You may simply wish to copy the Global
module from the sample application, which contains some useful
declarations from the WIN API, as well.

And that's it. Have fun, eh?

vxBase Page 11

xBase Expressions, Functions, and Operators

Compatibilities and Incompatibilities
vxBase dbf files (database files) and dbt files (memo files) are

compatible with those of Clipper, dBase III and III+, and any other
"xBase product". They are not compatible with dBase IV.

vxBase index files use the Clipper standard .ntx files. These indexes
are more efficient both in speed and size than traditional ndx files.
vxBase again imposes one important restriction. In the interests of
speed and simplicity, all indexing expressions must evaluate as strings.
This means that current indexes you wish to use in a new vxBase
application must be converted if they contain numeric fields or date
fields. Use the STR() function to convert numeric fields to strings, and
the DTOS() function to convert date fields to strings.

Expressions
This section and those following on Constants, Operators, and

Functions refer to xBase conventions. xBase expressions are used
within vxBase to communicate with the xBase file via standard xBase
index expressions, filter strings, etc. These expressions are not
availabe directly from Visual Basic; rather, they are passed as
parameters to vxBase functions that do the low level work of
translating and validating the expressions.

Expressions are character strings that consist of field names,
functions, constants, and operators that are formatted in conventional
xBase syntax. They are used for index expressions, filter expressions,
and expressions that control vxBrowse displays. The only difference
between vxBase expressions and conventional xBase expressions is in
the characters that delimit strings. vxBase only supports single or
double quotes; the traditional square bracket [] is not supported.
Visual Basic functions must not be included in a parameter passed to a
vxBase function that requires an xBase expression.

Conventional xBase functions and operators that are supported by
vxBase are listed below. These and only these may be included in the
construction of an xBase expression.

An expression may be as simple as a single field name (e.g.,
cust_name) or as complicated as an IIF function which returns the
result of complex expressions (e.g., IIF(left(phone_num,1)=" ","No
phone on File",area_code+phone_num)).

vxBase Page 12

The IIF example expressed in normal language would read as "If the
first character of the phone_num field is blank, output the phrase 'No
phone on file'; otherwise, output the area code plus the phone
number". This expression contains two functions (IIF() and LEFT()), two
constants (a space between the two quotation marks and the phrase

vxBase Page 13

"No phone on file"), two field names (phone_num and area_code), and
two operators (the relational operator equal sign = and the string
concatenation operator plus sign +).

Expressions are used in index keys, filter definitions, definition of
beginning of file and end of file logic to a user table, in statements
used to join (or relate) one file to another, and in statements used to
define the contents of a display column when defining a table.

All expressions return a value of a specific type - either character,
numeric, date, or logical. In many cases, vxBase requires that an
expression return a value of a specific type. For example, when
defining a filter expression to limit the viewable records, the expression
must evaluate as logical (i.e., either TRUE or FALSE). A conditional filter
may be defined that limits a view to all customer records that begin
with the letter "A". This condition could be expressed as
LEFT(cust_name,1)="A". vxBase would interpret this as "If the leftmost
character of the field CUST_NAME is an "A", then display the record".
The presence of a relational operator (in this case, the equal sign)
generally denotes an expression that will evaluate as logical.

Expressions may be entered in upper or lower case.

Constants
An expression may contain one or more numeric, character, or

logical constants. An expression which consists of a single constant is
not very useful. Constants are usually used within more complex
expressions.

A numeric constant represents a number. For example, 4, 9.21, and
-26 are all numeric constants.

Character or string constants are always delimited with quotation
marks, either single or double. "This is a string", 'so is this', and "John
has 3 apples" are all character constants. A string that contains either
a double or single quotation mark must be delimited with the other
mark. For example, "John's apple" is a valid string. 'John's apple' is not
a valid string. You will normally be passing constants from the Visual
Basic environment to vxBase. In this case, the normal procedure would
be to delimit the entire expression in double quotes and any string
constants that form part of the expression in single quotes.

Logical constants are represented by .TRUE. or .FALSE.. Note the
leading and trailing periods. .T. and .F. are valid abbreviations for the
logical constants and the letters must be bounded by periods on both

vxBase Page 14

sides.

vxBase Page 15

Operators
Operators are signs used to manipulate fields, constants, and the

results of functions. A plus sign (+) is used as an Add Operator in the
expression 4+5. Two numeric constants are added together to return
the numeric value 9.

Operators are type specific. For example, arithmetic operators
must act on numeric types. The Divide Operator (/) only acts on
numeric types. Some operators perform double duty. The Plus and
Minus signs are both arithmetic and string operators. vxBase
determines the appropriate operation according to the type of data
being acted upon. The data types on either side of a relational operator
must be the same (i.e., strings must be compared to strings and
numbers must be compared to numbers). Functions which change the
data type may be used to convert operands for use in relational
expressions.

The only mixed operands allowed are involved in Date Arithmetic. A
numeric constant, field, or expression may be added to or subtracted
from a date type. Dates subtracted from dates yield a numeric type
(i.e., the number of days between two dates).

Numeric Operators
+ Addition
- Subtraction
* Multiplication
/ Division
^ or ** Exponentiation
() Groups sets of numbers (evaluation order)

Relational Operators
= Equal to
Not equal to
<> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
$ Is contained in the set or is a subset of

All relational operators return a Logical result. All operators except
the Contains($) operator work on numeric, character, or date values.
The $ operator works on two values of type character and returns true
if the first value is contained in the second (e.g., "DC"$"ABDC"
returns .TRUE.).

vxBase Page 16

vxBase Page 17

Logical Operators
.AND. both expressions are true
.OR. either expression is true
.NOT. either expression is false

Note the leading and trailing periods that delimit a logical operator.

Character (String) Operators
+ Concatenates (joins) two or more character expressions. Trailing
blank spaces in the expressions will be placed at the end of each
expression.

- Concatenates two or more expressions. Trailing blank spaces will be
removed from the expression preceding the operator and placed at the
end of the expression following the minus sign operator.

Operator Precedence
When more than one type of operator appears in an expression,

the order of evaluation is as follows:
string
numeric
relational
logical

Expressions containing more than one operator are evaluated from
left to right. Parentheses can be used to change the precedence level
of operators (see example below). If parentheses are nested, the
innermost set is evaluated first.

Numeric operators are evaluated as follows:
operators contained in parentheses
exponentiation
multiplication and division
addition and subtraction

Evaluation order may be altered with parentheses:
1+2*3+4 = 11
(1+2)*3+4 = 13
(1+2)*(3+4) = 21

Functions
Functions may be used as expressions or parts of expressions.

Functions always return a value.

One of the most common uses of functions is to convert one data
vxBase Page 18

type into another. Functions can also extract system and database-
specific information.

Functions are formatted as FunctionName(Parameters). The
number and type of parameters contained within the function
parentheses depend on the specific function being called.

The following functions are available. For more information, see
the specific commands following the table.

Function Returns
CTOD(Char_Value) Character to date
DATE() System date
DAY(Date_Value) Numeric day
DELETED() .TRUE. if deleted
DTOC(Date_Value) Date to character
DTOS(Date_Value) Date to string
IIF(Logical, True Result, False Result) Logical if
LEFT(Char_Value, Length) Leftmost n characters
MONTH(Date_Value) Numeric month
RECNO() Record number
RIGHT(Char_Value, Length) Rightmost n characters
SOUNDEX(Char_Value) String to phonetic complement
STR(Number, Len, Dec) Numeric value to string
SUBSTR(Char_Value, Start, Length) Substring
TIME() System time as string
UPPER(Char_Value) Convert to uppercase
VAL(Char_Value) Character to numeric value
YEAR(Date_Value) Numeric Year

CTOD(Char_Value)
Character to date function.
Converts a character value in the form "MM/DD/YY" into a date

value.
Example: CTOD("07/22/91") returns a date in the form CCYYMMDD

19910722

DATE()
System date function.
Returns the system date as a date value.
Example: DTOC(DATE()) returns "07/22/91" If the date is July 22,

1991

DAY(Date_Value)
Numeric day function.

vxBase Page 19

Returns the day in a date_value as a number.
Example: DAY(DATE()) returns 22 if the date is July 22, 1991

DELETED()
Logical delete function.
Returns .TRUE. if the current record has been flagged for deletion.
Example: IIF(DELETED(), "Deleted", "Not Deleted")

DTOC(Date_Value)
Date to character function.
Converts a date value into a character string in the format

"MM/DD/YY".
Example: DTOC(DATE()) returns "07/22/91" if the date is July 22,

1991

DTOS(Date_Value)
Date to string function.
Converts a date value into a character string in the format

"CCYYMMDD".
Should always be used in index expressions if a date field is part of

the index
key expression.

Example: DTOS(DATE()) returns "19910722" if the date is July 22,
1991

IIF(Logical_Value, True_Result, False_Result)
Logical if function.
If Logical_Value is evaluated as .TRUE., then the expression

represented by
True_Result is returned; otherwise, the expression

represented by
False_Result is returned.

True_Result and False_Result must be of the same type.
Example 1: IIF(YEAR(DATE()) < 1991, "Last Year", "This Year")
Example 2: IIF(amt_owing>0, amt_owing, 0)

LEFT(Char_Value, Length)
Leftmost characters function.
Returns the characters on the left side of the string for the specified

length.
Example: IIF(LEFT(NAME,1)<>"A", "Does not begin with A",

"begins with A")

MONTH(Date_Value)
Numeric month function.

vxBase Page 20

Returns the month in a date_value as a number.
Example: MONTH(DATE()) returns 7 if the date is July 22, 1991

RECNO()
Record number function.
Returns the physical record number of the current record. The

record's logical
position according to the current index is probably not the

same as this
number. The record number normally reflects the sequence in

which the
record was entered.

Example: IIF(RECNO()=RECCOUNT(), "Last record", "Not last
record")

RIGHT(Char_Value, Length)
Rightmost characters function.
Returns the characters on the right side of the string for the

specified length.
Example: RIGHT("ABCDEF", 3) returns "DEF"

vxBase Page 21

SOUNDEX(Char_Value)
Character string to phonetic complement function. Useful for

indexing and
searching.

Returns a character string in the form AA1111.
Used primarily for indexes on names and descriptions to conserve

index
file space and simplify lookups where the precise spelling of

an
item (other than the first two characters) is unknown. Always
results in a table display that approximates alphabetical

order.
Note: The vxBase Soundex function is NOT the same as the Clipper

function of the same name. The vxBase function preserves
the

first TWO characters before translating the remainder of the
field

into a numeric phonetic complement.

This algorithm results in table displays that more closely
approximate

alphabetical order.
Example: SOUNDEX(cust_name) returns a 6 character string

STR(Number, Len, Dec)
Numeric to string function.
Converts a number to a string representation of that number. Len is

the
number of characters in the new string, and Dec is the

number of
decimals.

Note: If you wish to use a numeric field as an element in an index
expression,

always use the STR() function to convert the number into a
string.

Example: STR(CURRENT+PAST_DUE,9,2) would result in
"123456.78" if

the sum of the fields CURRENT and PAST_DUE was equal to
the

number 123,456.78.
Note: If the resulting number is too large for the allotted space, the

string is
filled with asterisks.

SUBSTR(Char_Value, Start, Length)
vxBase Page 22

Substring function.
Returns a substring of the string represented by Char_Value.
Example: SUBSTR("abcdef,4,3") returns "def" (i.e., extract a

substring from
"abcdef" beginning with the fourth character for a length of

3)

TIME()
Time of day function.
Returns the system time as a character string in the form

HH:MM:SS.
Example 1: TIME() returns 12:00:00 at noon
Example 2: TIME() returns 13:45:00 at one forty-five p.m.

vxBase Page 23

UPPER(Char_Value)
Convert string to uppercase.
Only alphabetic characters are affected.
Mostly used in index expressions to ensure correct collating

sequence for
character strings without regard to data entry formats.

Example: UPPER("abCD123g") returns "ABCD123G"

VAL(Char_Value)
String to numeric conversion.
Evaluation is terminated when a second decimal point, the first

non-numeric
character, or the end of the string is reached.

Example 1: VAL("23") returns 23
Example 2: VAL("12A12") returns 12
Example 3: VAL("-76.5") returns -76.5
Example 4: VAL(" 12.12") returns 12.12
Example 5: VAL("12. 12") returns 12.00
Example 6: VAL("A12") returns 0

YEAR(Date_Value)
Numeric year function.
Returns the year in a date_value as a number.
Example: YEAR(DATE()) returns 1991 if the date is July 22, 1991

vxBase Page 24

Sample Application
The sample application forms are designed for VGA/SVGA monitors

using vxBase control drawing functions to give them a metallic, three-
dimensional appearance. If you are running vxBase on a machine that
does not have VGA capabilities, the appearance of the forms will not
impress. Text on a gray background on an EGA monitor uses a different
fill gray than the standard light gray that appears on a VGA screen, and
the controls will all have a standard black border around them instead
of a recessed or raised appearance.

The sample application included with vxBase is intended to be used
as a template for the developer in designing his own applications.

The source code is liberally sprinkled with comments. In some
cases, more error checking would be required in a real application to
provide a more stable product for the end user. Source code comments
point out a number of these areas.

Almost all vxBase functions return a TRUE or FALSE value
depending on the outcome of the operation. It is up to the individual
programmer to decide just how much error trapping he would like to
include. Some functions would fail only rarely (and only in the case of
severely corrupted data). Such is the case with vxSkip(), for example,
in a single user environment. In a multiuser environment, vxSkip()
could be counted on to fail regularly when an attempt is made to
access a record that another user has locked. In this case, vxBase will
tell the end user that the record is locked and give him the opportunity
to retry the operation or abort. What if he aborts? Now it is up to the
programmer to decide on a strategy to take care of this eventuality.

The sample application is intended to illustrate the use of the
vxBrowse function in controlling the logical flow of an application. It is
used everywhere as a primary entry point for file editing and also as a
help mechanism when the user is required to select a value from
another file as input to a relational field.

Study the examples that set up visual relationships in a browse
table that are accessed through the LINK menu in the sample
application. This is a very powerful and unique function in the xBase
world.

To institute a file editing application, use the VXFORM2 module as
your first guide. This is a simple file consisting of two character fields
that illustrates most of the techniques you will use to build your own
applications. More advanced techniques can be found in other

vxBase Page 25

modules.

vxBase Page 26

The Problem
Our client is an aircraft brokerage firm who deals in used single

engine aircraft. He does not maintain an inventory of airplanes. Rather,
he solicits business from potential sellers, who usually are interested in
selling their existing airplane and buying something else more upscale
(or downscale depending on thier current financial status). If he can
find a buyer for the airplane, he receives a commission on the sale.
The whole business is rather like real estate.

His problem is keeping track of what he has available for sale and
remembering who was interested in it last month. In this sample
application we are going to solve his problem.

First of all we build a sign-on screen. This is VXFORM0. The main
controlling form will be VXFORM1. On it we will place all of the menu
items we need to complete the application.

Note that this sample application doesn't do any printing. I'll leave
that to you.

The Airtypes.Dbf File
The first thing we need is some way of categorizing the airplanes.

We build a database of aircraft makes and models and assign simple
three character codes to each type that we deal in. This file is critical
to the whole operation. A buyer is interested in this or that category.
Seller "A" is selling that category, and seller "B" is selling this category,
so we can easily match them up.

Module VXFORM2 is used to maintain the airtypes file. Its file layout
is as follows:
Field Name Type Length Decimals
---------- ---- ------ --------
category C 3 0 user defined code
catname C 35 0 make and model

This file is indexed on the CATEGORY field to file AIRTYPES.NTX.

Module VXFORM2 (Menu item File Types) does all the work of
maintaining this file. This is an excellent place to start your
investigation of vxBase because its as simple as it gets.

The Aircust.Dbf File
The next thing we need is some way to keep track of the names of

our buyers and sellers. Instead of having two files (one for buyers and
one for sellers), we can get away with just one. On the customer record

vxBase Page 27

we have logical fields telling us if the customer is a buyer and/or a
seller.

vxBase Page 28

Field Name Type Length Decimals
---------- ---- ------ --------
a_code C 6 0 user defined code
a_name C 40 0 his name
a_company C 40 0 and company
a_address C 40 0 street address
a_city C 25 0 city
a_state C 2 0 state/prov abbreviation
a_zip C 10 0 postal code
a_phoneres C 13 0 residence phone
a_phonebus C 13 0 business phone
a_fax C 13 0 fax
a_buyer L 1 0 buyer?
a_seller L 1 0 seller?
a_cdate D 8 0 record creation date
a_rdate D 8 0 record revision date
a_memo M 10 0 memo reference

The file is indexed three ways:
(1) on a_code to aircust1.ntx
(2) on upper(a_name) to aircust2.ntx
(3) on a_state + a_code to aircust3.ntx

There is a supporting file for the state/provincial abbreviation (I'm
Canadian so you'll have to put with the province bit and probably some
strange spelling). It simply contains the valid postal abbreviation for
the state or province and the state/provincial name. We use it to
validate data entry and also to provide a vxBrowse help example when
the user is entering data in the a_state field. The file is airstate.dbf
Field Name Type Length Decimals
---------- ---- ------ --------
statecode C 2 0 postal abbreviation
statename C 20 0 name

This file is indexed on statecode to airstat1.ntx and on
upper(statename) to airstat2.ntx. It was built with DataWorks, my
xBase File Manager for Windows (which you've just got to have if you
plan to do any serious development with vxBase: they go hand in
glove).

Form VXFORM3 maintains the customer file. The customer file is
accessed through the menu item File Customers.

The Airbuyer.Dbf File
If the user flags the customer record as a buyer, we enable the

Buyer Records button on the form. If it is clicked, we can peruse and/or
edit the buyer records attached to this customer. A buyer can be
interested in more than one type of aircraft, and he may be willing to

vxBase Page 29

spend differing amounts on different types. We're setting up a many to
one relationship with the customer record on the one hand and the
Airtypes file on the other.

vxBase Page 30

Field Name Type Length Decimals
---------- ---- ------ --------
b_code C 6 0 customer code
b_cat C 3 0 aircraft category
b_desc C 35 0 make and model
b_low N 8 0 low price range
b_high N 8 0 high price range

The file is indexed on b_code + b_cat to airbuy1.ntx, and b_cat +
b_code to airbuy2.ntx. We will use both sequences in our different joins
when we try to match buyers to sellers or sellers to buyers.

The b_desc field is redundant. It comes from the Airtypes file when
the buy category is selected. This data redundancy is necessary to
simplify and clarify the browse tables we will construct from this file.

 To effectively use vxBrowse, you may find it necessary to make more
data redundant than you have been used to in a Clipper or similar
environment. At some point in the development of vxBase, we will
make a SET RELATION clone command to eliminate this requirement.

The Aircraft.Dbf File
If the user flags the customer record as a seller, we enable the

Aircraft Button on the customer form. Only one aircraft record is
allowed to a customer. Clicking the Aircraft button on the customer
form takes us directly to an aircraft description form (VXFORM5). This
form is duplicated as VXFORM6 in another color and with different
buttons for use with the Aircraft display module accessed by the File
Aircraft menu item.
Field Name Type Length Decimals
---------- ---- ------ --------
c_code C 6 0 customer code
c_nno C 6 0 aircraft identifier
c_cat C 3 0 aircraft type
c_desc C 35 0 make and model
c_price C 8 0 asking price
c_year C 2 0 model year
c_annual C 4 0 year-month annual due
c_ttsn N 6 0 total time since new
c_smoh N 4 0 time since major o/haul
c_spoh N 4 0 time since prop overhaul
c_stoh N 4 0 time since top overhaul
c_gwt N 5 0 gross weight
c_ewt N 5 0 empty weight
c_fuelcap N 4 0 fuel capacity
c_net N 8 0 net to broker
c_navcom1 L 1 0 1st of 16 avionics flds
 ... which answer the
 ... question "Is this
 ... equipment installed?"

vxBase Page 31

c_deice L 1 0 last avionics field
c_memo M 10 0 memo about the aircraft

The file is indexed on c_code + c_nno to aircraf1.ntx and c_cat +
c_code to aircraf2.ntx.
The Forms
VXFORM0 is the startup form.
VXFORM1 is the menu form and system controller.
VXFORM2 is the Airtypes record editing form.
VXFORM3 is the Aircust record editing form.
VXFORM4 is the Airbuyer record editing form.
VXFORM5 is the Aircraft record editing form.
VXFORM6 is the Aircraft detail display form.
VXFORM7 is a sample form that shows you how to extract xBase field
and file details using vxBase commands.

The Link Menu
These two functions show off the power of vxBrowse and visual

joins to best advantage. Bring up the Buyers to Sellers item and hit the
Join menu item. Its magic! With an absolute minimum of effort we can
link potential buyers to sellers and vice versa.

Running the Sample Application
The name of the project is vxbtest.mak. It should reside in the \vb\

vxbtest directory you were asked to set up when you installed vxBase.
Open the project and run, or make an .EXE and run it.

vxBase Page 32

Tips and Techniques
Entry and Exit Strategies

Please study the methods of form loading/unloading and exit
procedures in the sample application and emulate these methods in
your own application. Remember that in a Windows environment we
can shut down a running application from a number of areas - your
own Exit menu item, the application's system menu, or even shut down
Windows entirely while your application is running. It is imperative that
xBase files that have undergone changes are closed properly to ensure
no loss of data, header information, or index corruption.

The sample application allows the form with the system menu on it
to remain visible. We use global flags that are set when a form is
loaded and reset when it is unloaded to test whether there are any
active forms running when an exit is taken from this top level window.

Access to Form Menus
vxBase requires parent windows to draw upon. If your Visual Basic

parent form contains menus, remember that the menu items will be
available to the user when a vxBrowse table is being shown and
program accordingly. For example, it would be foolhardy to pack a file
that was already open and unlocked and being displayed in a browse
table. The application WILL crash when the user attempts to access the
browse table again. See the sample code in vxPack for a method of
checking the open status of files before performing critical operations
on them. You can also disable menu items temporarily before
beginning the browse. Almost every sub-function in the sample
application disables one or more menu items.

Data Entry
xBase programmers have become accustomed to a get system that

effectively defines what data is entered, how it looks, and how long it
is. The sample application has many examples to guide you towards
proper data validation. It takes a little more work in Windows. The
sample uses these methods attached to each edit control to achieve
some logical flow for you as the programmer to use as a guide without
getting lost in a maze of global subroutines.

Most of the methods would be better served as global functions.
Over time, you should be able to build your own library of data
validation routines to make life simpler for your next application.

Particularly examine the GotFocus and KeyPress events attached to
the various edit controls in the sample application. I think you'll get
some good ideas there for limiting data entry length, case conversion,

vxBase Page 33

and numeric validation.

Logical fields have been much ignored among xBase programmers
but I think they'll make a comeback considering how effective they are
in controlling Windows' check boxes and radio buttons.

Parents for vxBase Windows
Windows created with vxBase functions (vxBrowse and

vxMemoEdit) absolutely require an active Visual Basic form to act as
parent. Their sizes are calculated based upon the size of the active
window.

Data Paths
The sample application has data paths for the files hard coded into

each vxUse. You would be well advised to set up a system that solicited
a path that you could save and prepend to each file name for each
command that requires it. vxBase acts like other xBase systems in that
it does not find data files that are simply in the system path. You have
to tell vxBase where the files are.

Controlling Multiple Windows
vxBase maintains an internal task-window manager that registers

database select areas with windows if certain rules are followed.
Always include a vxSelectDbf (or vxUseDbf) statement accessing the
first database you will be working on in any form as the first statement
in the Form_Load procedure and as the first statement in the
Form_Paint procedure (see Multitasking issues discussed below). The
Form_Load select registers the database as the default for the
application; the Form_Paint select registers the database with the
window.

If you are going to leave a window visible that contains access to
menu items (as in the sample application), carefully disable menu
items that could adversely affect the data currently displayed on the
form. For example, if you had a record editing form visible for FileX,
you would not want the user to select a pack or reindex item from a
background menu that could compromise the status of the current file
(especially if the pack or reindex function closes the file when it
terminates).

You should also always disable the menu item that brought you to
the current form. In any single instance, any given database is opened
only once, no matter how many vxUseDbf commands you issue for it. If
the user wants two forms up editing or displaying records in the same
file, he can run a second instance of your program. The second

vxBase Page 34

instance gets its own select area. Always remember that you don't
know what the user is liable to do, so disable those functions that could
compromise your current position.

Dataworks
Dataworks is a dictionary based xBase file management system for

Windows that allows you to interactively create dbf/ntx files, import
your own files, display, join, modify xBase structures, and so on. It is an
excellent visual additive tool for the vxBase programmer - much like
the dBase dot prompt was to a whole generation of xBase
programmers. It is was written by the same author as vxBase and is
available for the same price (and probably in the same library if you
obtained vxBase from a bulletin board - the current name of the file is
dw125.zip. See the form at the back of this manual for ordering
information.

vxBase Page 35

MultiTasking and Multiuser Considerations
MultiTasking

vxBase supports multitasking. You can run a number of applications
using vxBase all at the same time. You can run mutiple instances of the
same program. You can have multiple windows visible each accessing a
different database (in the same instance of the program) or the same
databases (in multiple instances of the same program or other
programs). As a programmer, you don't know what the user is liable to
do. He can easily compromise a database by injudicious use of the
Windows multitasking environment. You can make every effort to
disable menu items that could harm the current window data, but
these efforts could be circumvented by a user playing with multiple
instances of your program. You may wish to limit Windows by only
allowing one instance of your program. You can do this by
implementing a window test scheme in the form load procedure of the
first form in your application.

If you don't wish to place artificial limits on the user, you may wish
to create separate file maintenance programs for packing and
reindexing files that won't run if your main application is running. This
is probably your best course of action.

To implement a vxBase application in a multitasking environment,
vxBase places minimal restrictions on the programmer. The user might
have two or more windows open each displaying different data and he
may move back and forth between them at will. In a normal xBase
application, there may be only one active database select area. In a
Windows environment, however, we may have three or four or five
active windows with different databases represented in each,
representing the same program or different programs (a task). Every
time the user moves from one open window to another, as a
programmer in the old xBase tradition, you would have to ensure the
proper database was selected. vxBase removes this onus by
maintaining a task-window-select area table that automatically selects
the correct database when the window controlling that database
receives the input focus. vxBase also maintains a default select area
for the task that it uses to register databases with windows if no
database has been selected for that window. Aa a programmer, you are
required to insert three vxBase calls into every separate form
procedure that accesses a database:

(1) vxSelectDbf() the first database accessed by the form as the
first line in the Form_Load procedure. This registers the database as
the default database for the task.

vxBase Page 36

(2) vxSelectDbf() the first database accessed by the form as the
first line in the Form_Paint procedure. This registers the database with
the window associated with the current task.

(3) issue the vxWindowDereg command in your form unload
procedure to remove the task-window-select entry from the vxBase
task management table. this table is limited to 96 entries and could
overflow if you fail to deregister the windows. Issue the
vxWindowDereg command after closing any databases you wish to
close in the Form_Unload procedure.

vxSelectDbf can be replaced by vxUseDbf to register the databases
if the file has not been opened yet. These are the only two vxBase
functions that register databases with windows.

While testing, if you get an "Invalid field name" error message from
vxBase, and you know the field exists in the database (i.e., the name is
correctly spelled), in all likelihood the wrong database is active
because of vxBase's automatic selection. To correct the problem,
simply insert a vxSelectDbf statement for the database you want in
front of the field reference. Some things go on in the background that
you are hardly aware of (e.g., Form painting), and if you have the
required select statement in the Form_Paint procedure then a reference
to a field in another database may be invalid if a Form Paint has taken
place since you last accessed the file you thought was still active. See
the code examples in the sample application for the Help buttons (e.g.,
CustStateHelp in VXFORM3) for a perfect instance of the above.
Disabling and then re-enabling a background form for a help browse
causes a Form_Paint message to be issued, which selects a different
database than the one we just used, so we have to re-select the
database to access its fields.

If the database has been registered with a window, any call to a
vxBase function that accesses a database will result in a search in the
task management table for the window id of the window that currently
owns the input focus. If found, the database is automatically selected.
If no entry is found, the database selected will be the task default. The
user may then have multiple forms open and switch between them at
will. It doesn't matter to you as the programmer which window is
selected or where the program instruction pointer is residing when the
user switches to another window. The correct database is automatically
selected if the simple rules outlined above are followed.

vxBase allows up to 24 databases to be open simultaneously (with
up to 32 indexes) in total (not per task). Your system configuration may
not allow this many. Only one select area is assigned to a database in

vxBase Page 37

any given task. The select area contains critical information about the
state of the database (e.g., current record number, filter, table
definition, etc.). Opening the file in the same task again will change
this information for the subtask that opened the file in the first place.
Bear this in mind and disable access to functions that could change the
state of the database when you don't want it changed. Use the sample
application as a guide.

The same database may be opened in different tasks (multiple
instances of the same program are different tasks as well) and each
different task gets its own select area for the database. Changes made
to records by one task are reflected in the other task as soon as the
records come into view. Records currently in view, such as in a browse
table, won't reflect the changes until the view window has been
repainted. Because each task has its own select area, changes to
record positions, tables, etc. in one task do not affect the state of the
database in the other task (or tasks).

vxBase Page 38

MultiUser
On a local area network, many workstations can run the same

Visual Basic program using vxBase at the same time, all accessing the
same files on a network drive. Obviously, there are no internal conflicts
between the allocated memory buffers residing on the individual
workstations. There may, however, be file and record conflicts when
more than one user attempts to access the same record (or file) as
another user.

It is not necessary for the user or the programmer to be concerned
with explicit file and/or record locking, although these functions are
provided as part of the vxBase command set. Commands that
obviously require a file lock (such as vxPack or vxReindex) are
automatically locked by vxBase during the processing of the command.
Records that occupy any given workstation buffer are also
automatically locked, as opposed to Clipper which allows simultaneous
access to the same record and therefore also allows simultaneous
updating of the record while it resides in each workstation's record
buffer. In this case, the last update always wins and the user who wrote
the record out first loses his changes.

In a multiuser environment, it is usually necessary to provide a
network signature flag on any record that could be affected by
simultaneous updates. The signature is simply a number that is
incremented each time the record is updated. When a user reads in the
record for updating, he saves the contents of the signature field and he
moves the contents of every other field in the record to working
storage. When the update on the working storage variables is finished,
it is necessary to re-read the record and check to see that the
signature field has not changed since he first read the record. If it is
the same, he locks the record, replaces required fields with his
changed data, increments the signature field, and then unlocks the
record. If the signature field had changed since he first read the record,
it would be necessary to re-do the update because the other user could
have changed sensitive data.

With vxBase, any record currently occupying a workstation buffer
automatically locks out other users from accessing that record. The
programmer must be aware of this fact when designing a system for
multiuse. A signature system such as the one described above could
easily be implemented as follows:
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars

vxBase Page 39

 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

vxBase Page 40

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

The only real difference between a Clipper implementation and the
vxBase procedure is that with vxBase you must explicitly unlock the
record instead of locking it. If you fail to do so, other users even
attempting to browse in the same area of the file will have to wait until
the user who has the locked record finishes his update.

The sample code attached to VXFORM2 contains complete
protocols for unlocking the database in a multiuser environment.
Signature fields are not used, however, for simplicity's sake. Bear in
mind that for a robust multiuser system they should be attached to all
master files that could be affected by simultaneous updates.

Note that records displayed via a vxBrowse table are not locked.
Only when a selection has been made from a vxBrowse table does a
locked record occupy the workstation buffer space.

vxBase Page 41

vxAppendBlank
Declaration

Declare Function vxAppendBlank Lib "vxbase.dll" () As Integer

Purpose
Append a blank record to the physical end of the database file in

preparation for using the vxReplx functions to replace the fields with
your data.

Parameters
None.

Returns
TRUE if record successfully appended.
FALSE if not successfully appended.

Usage
Always append a blank record to receive fields for a new record

that is being inserted into the database. If you forget to do this, the
current record will be changed instead.

Always close the database before exiting your application. Use
vxCloseAll in your exit routine to ensure that all records are flushed to
disk and the xBase header is updated correctly.

Multiuser Considerations
All active index files associated with the selected database are

locked until the record is written. The record is written either by
performing an explicit vxWrite command or implicitly by performing
some other action on the file such as vxClose, vxSkip, or vxGo.

Example
If AddMode Then
 If Not vxAppendBlank() Then

 MsgBox "Append Error"
 Else

 vxReplString("Field1","New Field")
 End If
End If

See Also
vxWrite
vxReplxxx

vxBase Page 42

vxAppendFrom

Declaration
Declare Function vxAppendFrom Lib "vxbase.dll" (ByVal FromFile As

String) As Integer

Purpose
Append all of the records from the named database onto the

currently selected database.

Parameters
FromFile is either a string variable that contains the name of the

file that will be appended from (including an optional path
specification) or a literal string. If no file extension is supplied,
vxAppendFrom defaults to ".dbf". This file does not have to be open for
the operation to succeed. If it is open, it will be closed when the
function returns to your program.

Returns
TRUE if the operation was successful or FALSE if it was not.

Usage
Useful for processing transactions in a batch and then, after

verification, appending the transactions to a master file. For example,
in a general ledger application, it would be commonplace to collect
transactions in a batch. The user could enter and edit transactions at
will in one or more sessions. When the user decides to post the
transactions, they would then be applied to the general ledger, added
to the master transaction file with the vxAppendFrom function, and
then the records in the batch file would be deleted to protect the
integrity of the audit trail. In this case, the structure of the transaction
batch file would probably be the same as the structure of the master
file.

This function would also be used when transferring fields from one
file to fields that have the same name and type in another file. Any
fields in the From file that match in name and type to fields in the
current database are appended record by record to the current
selection. Truncation in the receiving file occurs on the right for
character fields and on the left for numeric fields if the lengths of the
fields differ. If the field is numeric and the number of decimals differs,
truncation occurs on the right if the number of decimals in the
receiving field is less than the sending field.

Files that duplicate current structures may also be dynamically
vxBase Page 43

created at run time with the vxCopyStruc function, used as batch files,
appended to master files, and then deleted.

Note that filters on either the FromFile (if it happens to be open)
or on the currently selected database have no effect. All records,
including deleted records, in the FromFile are appended.

Warning: If the sending and receiving files have memo fields with
the same name, the receiving file will get the memo reference but no
memo will be transferred.

Multiuser Considerations
Both databases are locked for the duration of the operation. When

the function completes, the current selection is the same as on entry,
and the record pointer is pointing to the top record in the file, which is
locked.

Example
 ' open transaction batch file
 ' ---------------------------
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(Transdbf%)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom("Transbat.dbf")
 j% = vxClose() ' close master file

 ' reopen transaction batch because the From
 ' file is closed by vxAppendFrom
 ' --
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(TransDbf%)
 j% = vxZap() ' clear the batch
 End If
 vxClose() ' close the batch

vxBase Page 44

See Also
vxCopy
vxCopyStruc

vxBase Page 45

vxAreaDbf

Declaration
Declare Function vxAreaDbf Lib "vxbase.dll" (ByVal DbfName As

String) As Integer

Purpose
Extracts the select area assigned by vxBase to the named database

file when it was opened with vxUseDbf. The select area is an integer
with a range from 1 through 24, which is the maximum number of
open dbf files that can be assigned to all vxBase tasks on a single
workstation.

Many vxBase functions take a select area as a parameter when
identifying a dbf and its related ntx files instead of using the file name.

This function would be used primarily to test the open status of
a .dbf. Under normal conditions, the select area integer is assigned to a
global variable when the file is opened with vxUseDbf.

Parameters
DbfName is either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If no file
extension is supplied, vxAreaDbf defaults to ".dbf".

Returns
An integer identifying the select area of the named file that was

assigned by vxBase when the file was opened with vxUseDbf. A
number > 0 identifies an open file. If the file is not open, FALSE is
returned. Note that you cannot test the return value with a NOT
expression because a number greater than zero is NOT TRUE (but
neither is it FALSE) according to Visual Basic. Store the return value in
a variable and explicitly test it for FALSE.

Usage
Use the returned value as input to any other vxBase function that

may require a number instead of a file name to identify the requested
dbf-ntx set or to check on whether the file is open or not. Use GLOBAL
variable names that uniquely identify each dbf in your application.
"CustomerFile" is a better name than "DbfFile".

This function may be used to test the open status of a file that is
about to undergo a critical operation (such as vxPack or vxReindex). A
FALSE return indicates that no active task (not just the current one)
has the file open.

vxBase Page 46

Note that since this function returns the area selected by
any task that is active, you cannot rely on it to return a value
that you can use in your application.

vxBase Page 47

Example
 ' See if file is open at this workstation
 ' ---------------------------------------
 NamesDbf% = vxAreaDbf("c:\database\names.dbf")
 If NamesDbf% = FALSE Then
 vxUseDbf("c:\database\names.dbf")
 j% = vxPack()
 j% = vxClose()
 Else
 MsgBox "File is open. Function aborted."
 End If

See Also
vxPack
vxSelectDbf
vxUseDbf

vxBase Page 48

vxAreaNtx
Declaration

Declare Function vxAreaNtx Lib "vxbase.dll" (ByVal NtxName As
String) As Integer

Purpose
Extracts the select area assigned by vxBase to the named index file

when it was opened with vxUseNtx. The select area is an integer with a
range from 1 through the number of open files your system can
support for a single task. vxBase allows up to 24 open dbf areas. The
number of index files attached to these is limited by the operating
environment (maximum 32).

Many vxBase functions take a select area as a parameter when
identifying an open index instead of using the file name.

This function would be used rarely. Under normal conditions, the
select area integer is assigned to a global variable when the file is
opened with vxUseNtx.

Parameters
NtxName is either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If no file
extension is supplied, vxAreaNtx defaults to ".ntx".

Returns
An integer identifying the select area of the named file that was

assigned by vxBase when the file was opened with vxUseNtx. A
number > 0 identifies an open file. If the file is not open, FALSE is
returned. Note that you cannot test the return value with a NOT
expression because a number greater than zero is NOT TRUE (but
neither is it FALSE) according to Visual Basic. Store the return value in
a variable and explicitly test it for FALSE.

TRUE is returned if any index with the same name is open in any
vxBase task.

Usage
Use the returned value as input to any other vxBase function that

may require a number instead of a file name to identify the requested
ntx or to check on whether the file is open or not. Use GLOBAL variable
names that uniquely identify each ntx in your application. "CustIndex"
is a better name than "NtxFile".

vxBase Page 49

Note that since this function returns the area selected by
any task that is active you cannot rely on it to return a value
that you can use in your application.

vxBase Page 50

Example
NamesNtx% = vxAreaNtx("c:\database\names.ntx")
If NamesNtx% = FALSE Then
 MsgBox "NAMES.NTX is not open"
End If

See Also
vxSelectNtx
vxUseNtx

vxBase Page 51

vxBof

Declaration
Declare Function vxBof Lib "vxbase.dll" () As Integer

Purpose
Test if beginning of file has been reached in the currently selected

database.

Parameters
None.

Returns
TRUE if an attempt was made to skip beyond the first record in the

file. Otherwise FALSE.

Usage
When skipping through a file backwards, always use vxBof to test if

the top of the file has been reached. Once the condition has been
satisified, it remains true until the record pointer is repositioned with a
call to vxGo, vxSkip, or vxSeek. It is never possible to skip to a record
prior to the first record in the file. If vxBof is true, the record buffer will
contain the elements of the first record. (It is possible, however, to skip
beyond the end of the file to an empty record buffer.)

Example
' skip back one record
' -----------------------
Do
 j% = vxSkip(-1)
 If j% = FALSE Then
 MsgBox "Error on Skip Previous. Try Reindex."
 Exit Sub
 End If
 If vxBof() Then Exit Do
Loop Until Not vxDeleted()

' test for beginning of file
' --------------------------
If vxBof() Then
 Beep
 TypeStatus.text = "Beginning of File!"
 j% = vxTop() ' make sure we've got a record
Else
 TypeStatus.text = "Skipped to " + LTrim$(Str$(vxRecNo()))
End If

See Also
vxBase Page 52

vxEof
vxSkip

vxBase Page 53

vxBottom

Declaration
Declare Function vxBottom Lib "vxbase.dll" () As Integer

Purpose
Position record pointer to the last record in the currently selected

file. If an index is active, this is the last logical record in the file. If no
index is in use, it is the last physical record in the file.

Parameters
None.

Returns
TRUE if the attempt was successful. Otherwise, it is FALSE. A FALSE

condition can occur on an empty database or on a file with a corrupted
index.

Usage
Useful when your program requires a forced end of file condition.

See the example below.

If a filter is active, vxBottom will attempt to find the last record in
the file that satisfies the filter.

Multiuser Considerations
The last record in the file is locked.

Example
 If vxSeek("ABC") Then
 Do While Not vxEof()
 j% = vxSkip(1)
 If vxField("CustCode") <> "ABC" Then
 PrintTotals
 j% = vxBottom() ' Exit Do would work
 j% = vxSkip(1) ' just as well but this is
 Else ' an example
 PrintRecord
 End If
 Loop
 End If
 j% = vxUnlock()

See Also
vxTop

vxBase Page 54

vxBrowse

Declaration
Declare Sub vxBrowse Lib "vxbase.dll" (ByVal Hwnd As Integer, ByVal

DbfArea As Integer, ByVal NtxArea As Integer, ByVal EditMode As Integer,
ByVal AllowFilter As Integer, ByVal EditMenu As Integer, ByVal StartRec
As Long, ByVal Caption As String, RetVal As Long)

Purpose
Create and display a table of records using the defined database

and index. This is a very powerful function that eliminates the need for
a grid control or huge arrays to display a data table. Combined with the
vxTable functions and the vxJoin function it gives the programmer an
extremely useful tool with little effort.

Parameters
Hwnd is the hWnd property of an active window which assumes

the role of parent to the vxBrowse window. There must be an existing
form upon which the table is drawn.

DbfArea is the select area of an already opened database. If it is
not currently selected, vxBrowse will make it the current selection. It
will be the current selection when vxBrowse returns as well.

NtxArea is the select area of an index file attached to the
DbfArea. If you do not wish to browse with an index, pass a 0 (zero) to
the function.

EditMode is passed as TRUE or FALSE. If TRUE, when the user
double clicks on any column in the table, the field attached to that row
and column is presented for update. Note that the only data validation
possible with the onscreen edit is for type (i.e., numeric fields must
contain numbers, etc.). If your data requires more sophisticated
validation, never pass a TRUE to this function. If EditMode is FALSE,
doubleclicking on a record will return the selected record number
(which is the same result as Edit Update or pressing the ENTER key). If
EditMode is TRUE, it would probably be a good idea to add the words
"Edit Enabled" to your browse window caption to alert the user that
onscreen editing is active.

If a vxTableDeclare has been issued to control your browse display,
any column defined as an expression rather than as a field will not be
available for edit (obviously). You can use this fact to your advantage if
you wish to limit onscreen editing to only a few fields. All of the fields
which would have editing disallowed could be defined in the table as

vxBase Page 55

expressions rather than fields (e.g., instead of displaying field
"category", you could define the column to display
"substr(category,1,3)" (assuming the length of field "category" is 3),
which would effectively rule out any editing on that field, or you could
simply tell vxBase that the item is an expression with the VX_EXPR
parameter (see vxTableField for more information).

AllowFilter is passed as TRUE or FALSE. If TRUE, an item on the
vxBrowse menu will allow the user to invoke a dialog box that accepts
a standard xBase expression as a filter string. If the expression passes
the evaluation test (and that test ensures that the expression returns a
logical result), then the filter will be applied to the current browse
table. For example, areacode = '403' would be a valid filter expression if
the file contained a character field named "areacode". The table would
then only contain records whose areacode matched "403". Note that this
filter applies only to the active browse window. It goes away when the
window is closed and will not affect any program logic. It will, however,
override any filter set by vxFilter before the browse is invoked. When
the window is closed, the old vxFilter expression will once again take
effect. If AllowFilter is FALSE, the user is not allowed to enter a filter
when browsing. vxBrowse always filters out deleted records .

Use filters judiciously. A filter can slow the vxBrowse display in a
large file enormously. See vxFilter for more details.

EditMenu is passed as TRUE or FALSE. If TRUE, an Edit menu item
is presented on the vxBrowse menu bar. The Edit menu contains
Update, Add, and Delete selections. If any of these are selected by the
user, a code is passed back to the program in the RetVal parameter
(see below) informing the program what the user wants to do. These
three items are standard fare in maintaining files. If you are going to
use the vxBrowse table as display only, or as a help window, then
EditMenu would be passed as FALSE.

StartRec is a long integer that contains the starting record number
for the browse. If passed as 0 (zero), then the record pointer is
positioned to the first record in the file (either logical or physical
depending on whether an index was specified or not). If you are
interested in a subset of records in the file, it is your responsibility to
position the record pointer to the first one that meets your criteria
before beginning the browse. See the sample code attached to
VXFORM3 (Proc BuyRecs_Click) for an example of using vxBrowse to
display a record subset. If an invalid StartRec is passed, the browse
will begin at the first record in the file.

Caption is a string that is used as a Window caption for the
vxBase Page 56

vxBrowse table.

RetVal must be dimensioned as a long integer before the browse
commences. The result of the browse is passed back to the program in
this parameter. Usually, the programmer will set up a number of
GLOBAL RetVals (one for each file that will be browsed) and use these
as prime movers in his logical flow. Study the code in VXFORM2 and
the use of the TypeReturn variable to control the flow of logic
surrounding the AirTypes file.

The values returned in RetVal are defined as Global constants in
the vxbase.txt file.

BROWSE_CLOSED: The user closed the window with the System menu
or Alt-F4. He doesn't want to do anything with this browse.

BROWSE_EDIT: The user selected the Update function from the Edit
menu. The record pointer is positioned at the record that was
highlighted on the browse table immediately prior to the menu
selection.

BROWSE_ADD: The user selected the Add item from the Edit menu. The
record pointer is positioned at the record that was highlighted on the
browse table immediately prior to the menu selection.

BROWSE_DELETE: The user selected the Delete item from the Edit
menu. No action is taken by vxBase on the selection. Instead, it is the
programmer's responsibility to ensure that the delete is handled
properly. This usually involves a confirmation window and cross-
referencing logic to remove related records from other files. The record
pointer is positioned at the record that was highlighted on the browse
table immediately prior to the menu selection.

BROWSE_ERROR: An error occurred when attempting to start the
browse. For example, the defined database or index area is invalid.

In addition to these constants, BROWSE_USER is also defined to handle
circumstances known only to the programmer. BROWSE_USER could be
used if the RetVal parameter is indeed the prime mover behind your
logical flow. See an example of its use in the VXFORM2 Form_Unload
procedure.

If the user presses the ENTER key, or doubleclicks a record (when
EditMode is FALSE), RetVal will contain the record number that was
highlighted in the browse table immediately prior to the user action. All

vxBase Page 57

of the BROWSE_ constants are negative numbers. If RetVal is greater
than zero, then you know what action the user took.

Returns
See the RetVal parameter above.

Usage
vxBrowse is intended to be the primary tool you will use to create

vxBase applications. You can display only the data you want in the
table by using the vxTable functions. You can define visual relationships
between one file and another (and another and another) with the
vxJoin command that are absolutely splendid in execution (try the Link
items in the sample system and let your imagination flow).

The entire set of sample programs revolves around the use of
vxBrowse. Use them freely as templates for your own applications.

vxBrowse is also very handy in implementing help lists. For
example, suppose a form control required the entry of a valid customer
code. You can set up a help button beside the customer code control
that activates a browse window on the customer file. When the user
finds the record he wants, he simply doubleclicks it or presses the
ENTER key to pass the record back to you. You can then extract the
required field data and place it directly into the control without the
need for typing the data.

 The vxTable functions allow you customize your browse tables as to
column heads and the sequence and format of the data you display. If
no table is declared, vxBrowse provides a raw data display with the
field names as column heads. Numeric fields are right justified in
columns and dates are formatted as "mm/dd/yy".

Quick Key
Quick Key searches are a standard feature of a vxBrowse window.

Usually, you will set up a browse with the vxTableDeclare function and
place the index key field first in the column array. If an index is active
during a browse. the user simply presses the sequence of characters
he is looking for and the browse table reacts accordingly. The status of
the Quick Key field is shown in the window caption.

For example, if the user had a browse table active consisting of
customer codes and names, and the file was keyed on the code, then
pressing the "T" key would position the table to the first record that
had a customer code beginning with the letter "T". Subsequent key
presses without intervening actions (such as pressing an arrow key or

vxBase Page 58

using the vertical scroll bar) will expand the quick key and narrow the
search. If a quick key item is not found, the table will be positioned to
the next higher record and the quick key adjusted accordingly (for
example, if "TH" was entered and no code existed that began with
these two letters, but a code existed that began with the letters "TI",
then the table would be positioned there, and the quick key in the
caption would show "TI" instead of the "TH" that the user entered).

One limitation on Quick key access becomes evident if you have a
filter defined. If the partial key entered matches a filtered record,
vxBrowse makes no attempt to find a record past that to satisfy the the
logic in the paragraph above. Instead, a single beep is sounded and we
stay where we are.

Vertical Scrolling
Records that are displayed in a browse table with a controlling

index react to a movement in the vertical scroll bar thumb in two ways.
First, the relative position of the thumb in the scroll bar is ascertained
to determine where, approximately, the display should start. For
example, if the thumb was positioned halfway down the bar, the
display should begin at the halfway point in the file. Because the file is
indexed, we cannot simply go to the halfway record (i.e., if there were
5000 records in the file, we cannot go to 2500 and start there).
Instead, we must find the 2500th index pointer so we read 2500 index
keys to get the start record. Second, we use the record number
attached to the key to get the first actual record and we're away.
Obviously, if the file is very large, using the thumb to move around in
the file will be on the slow side. The quickest way to traverse the
records in a browse table is to use the Quick Key feature or the Page
Keys (or click on the paging area in the vertical scroll bar).

Note: If a filter is set in a large file, a vxBrowse table will take
some time to initialize. The number of records in the file that pass the
filter must be ascertained to determine the vertical scroll bar extent.
The entire file must be read.

Other Menu Items
The browse table always has a menu bar. Items that always remain

on the menu bar are Query and Utilities.

In the query dialog box that is brought up when Query Search is
selected, the user may enter any string. The search is case insensitive.
It is also field insenstive. If the string is found anywhere in the record
(even crossing field boundaries), that record is highlighted. The Query
Find Next command simply finds the next occurrence of the same

vxBase Page 59

string.

The utilities provide a lowercase toggle. When checked (the default
value), the records in the table are displayed in all lowercase. This
makes a cleaner and more readable display. If the user wishes to
display the records exactly as entered, he toggles the lowercase switch
off. The default case used in the browse window may be changed with
vxBrowseCase.

The utilities Print option prints all records that vxBrowse would
display. Defined tables are used to supply headings and the printout is
exactly in the same format as the display. Use vxTableDeclare with
vxBrowse to format quick reports.

The About File item tells the user a little bit about the file - its
name, size, etc. The other about item is a Windows standard About box
that contains the copyright notice for vxBase.

vxBrowse Limitations
Up to 8 vxBrowse windows may be active at a time (total for all

active tasks using
vxBase). vxBrowse windows attached to a task must be closed in the
reverse sequence of opening. vxBase maintains an internal stack of
browse windows and informs the user about the closure sequence if he
picks the wrong one to close.

There is a reason for this. vxBrowse is a function and as such it
maintains a return address to the program line following the original
call. In C or Assembler, it is a simple matter to extract this address and
maintain an internal stack to always go back from whence you came,
no matter what the sequence of function return.

Unfortunately, Visual Basic maintains a program area for a call to a
DLL function in only one place in its structure. Therefore every call to
vxBrowse from Visual Basic emanates from the same program location
and returns to the instruction following the
call. Visual Basic maintains its own internal stack of return addresses
and pops the address of the LAST call to vxBrowse off of this stack and
returns to the instruction following that call. It always returns to the
instruction following the last call to vxBrowse.

The popping of the return address by Visual Basic follows a whole
lot of other things which essentially restores the Visual Basic state to
what it was before the call. What this means to us is that a function
such as vxBrowse, which does not return to Visual Basic immediately
after the call to it, and which may be called again in the Windows
environment while other vxBrowses still have not completed, must be
terminated in the reverse sequence of call in order for Visual Basic to

vxBase Page 60

return to the instruction following each vxBrowse.

On exit from a vxBase application, no vxBrowse table may be
active. See the example shown in vxCloseAll for an exit protocol that
ensures both windows and files are closed properly, and that allocated
memory is released.

Multiuser Considerations
No records are locked by vxBrowse unless and until the user makes

a record selection. If other users lock records that will be displayed by
the browse, the browse will wait until the file is free. If the user selects
a record for update or deletion that is already in use, he is informed
immediately via a message box that the record is locked and he can
retry the operation or abort and carry on with the browse.

Example
 j% = vxSelectDbf(AirtypesDbf) ' select database
 j% = vxSelectNtx(AirtypesNtx)

 TypeReturn = 0 ' Browse return value
 ' declared as GLOBAL

' An active form must be visible because we need a
' parent for our browse
' ---
 If Not VXFORM1.Visible Then VXFORM1.Show

' Execute the browse routine (will use table declared
' in TypesOpen - in sample file VXBMOD.BAS)
' --
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types", TypeReturn)
' (the above would be on one line)

' Browse returns a code or record number in TypeReturn var.
' If an edit menu item is selected, a code is returned.
' If the enter key is pressed, the rec number is returned.
' Double clicks when EditMode is true allow edit onscreen.
' (return codes defined in global vxbase.txt)
' ---
 Select Case TypeReturn

 Case BROWSE_ERROR
 MsgBox "Error in AirTypes Browse!"
 Exit Sub

 ' user closed browse with sys menu
 ' --------------------------------
 Case BROWSE_CLOSED
 j% = vxSelectDbf(AirtypesDbf)
 Call vxTableReset
 j% = vxClose()

vxBase Page 61

 Exit Sub

vxBase Page 62

 ' all other choices are processed by VXFORM2
 ' --
 Case Else
 VXFORM1.Hide
 VXFORM2.Show
 End Select

See Also
vxBrowseCase
vxJoin
vxTableDeclare
vxTableField

vxBase Page 63

vxBrowseCase

Declaration
Declare Sub vxBrowseCase Lib "vxbase.dll" (ByVal DefCase As Integer)

Purpose
Set the default case for ALL vxBrowse displays.

Parameters
DefCase is one of VX_UPPER or VX_LOWER as defined in

vxbase.txt.

Returns
Nothing.

Usage
The default case used to display data in vxBrowse tables is

VX_LOWER (i.e., lower case). The user can change the display to reflect
the exact contents of the database (as entered) by unchecking the
Utilities Lowercase menu item on the vxBrowse menu bar. The
programmer may change the default to VX_UPPER, which displays the
data exactly as entered, in both upper and lower case.

This is a SYSTEM WIDE function. All vxBrowse displays for all active
tasks will be affected. It would normally be issued in your startup form
FORM_LOAD procedure.

Example
Call vxBrowseCase(VX_UPPER)

See Also
vxBrowse

vxBase Page 64

vxChar

Declaration
Declare Function vxChar Lib "vxbase.dll" (ByVal FieldName As String)

As String

Purpose
Extract the first character from a defined field.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
A visual basic string that contains the first character of the field.

Usage
Commonly used to test the contents of a field whose data format is

known,

Example
 If UCase$(vxChar("PersonSex")) = "M" Then
 MaleProcess
 Else
 FemaleProcess
 End If

See Also

vxEmpty
vxField

vxBase Page 65

vxClose

Declaration
Declare Function vxClose Lib "vxbase.dll" () As Integer

Purpose
Close the currently selected database.

Parameters
None.

Returns
TRUE if the close was successful, FALSE if not. A FALSE return could

mean that one of the index files associated with the database had an
error in closing.

Usage
An open dbf file must always be closed. This ensures that any

changes to the xBase header info become permanent as well as
freeing any memory allocated to store the database structure, file
structures, record buffer, table declarations and table joins. If an
attempt is made to close a file that resides in an active browse window
(for example, by another task that is using the file), the file is not
closed but the result reported to the current task is TRUE and the file is
no longer available to be selected from the task that initiated the close
without another vxUseDbf being issued.

If the record buffer has been changed and not yet written, it is
written to disk.

All open index files associated with the dbf are also closed. It is not
necessary to explicitly close the index files.

Example
 j% = vxSelectDbf(AirtypesDbf)
 If Not vxClose() Then
 MsgBox "Error in Airtypes close"
 End If

See Also

vxCloseAll
vxCloseNtx
vxJoinReset
vxTableReset
vxUseDbf

vxBase Page 66

vxUseNtx

vxBase Page 67

vxCloseAll

Declaration
Declare Function vxCloseAll Lib "vxbase.dll" () As Integer

Purpose
Close all open database and index files.

Parameters
None.

Returns
TRUE if the operation is successful, otherwise FALSE. The operation

will always return FALSE if there are any active browse windows open.
The user is informed that the browse windows must be closed before
an exit is allowed. In your exit strategy, follow the protocol shown in
the example below (which comes directly from the sample application)
to ensure that everything is cleaned up properly when an exit is
requested.

Usage
Normally called when an application exit is taken to ensure that all

record buffers, index nodes, and xBase headers are written and all
associated memory is released.

Example
' ---
' This routine is activated from either the
' Exit menu item on VXFORM1 or by selecting
' the Close item from the system menu.
'
' We MUST test the vxCloseAll result in
' case there are any active browse windows
' that require closure before we can
' terminate the application
'
' If the close operation is successful, any
' open databases are closed (which updates
' the database header information) and all
' attached memory objects (Tables and Joins)
' are released.
' ---
Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 End If
End Sub

vxBase Page 68

See Also
vxClose
vxCloseNtx
vxJoinReset
vxTableReset

vxBase Page 69

vxCloseNtx

Declaration
Declare Function vxCloseNtx Lib "vxbase.dll" (ByVal NtxArea As

Integer) As Integer

Purpose
Close a previously opened index file.

Parameters
NtxArea is the select area of the index you wish to close. This

number is returned by vxUseNtx when the file is opened or by
vxAreaNtx after it has been opened.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
A dbf file is normally opened with all of its index files if there is any

chance that the file may change in the current procedure. This will
ensure that all index files are updated if any key fields are altered or
records are appended. A file opened for display only may be used with
one index, and then another requirement may necessitate the closure
of that index and the opening of one or more other index files (or none
if freeing a file handle is your intention) as the case may be. If a dbf file
is going to be left open, ensure that its index files are also open if it
may be altered.

Example
 MastFile% = vxUseDbf("Transfil.dbf")
 MastIndex% = vxUseNtx("Transfil.ntx")
 DisplayRecords
 j% = vxNtxClose(MastIndex%)
 MastIndex2% = vxUseNtx("Transfi2.ntx")

See Also

vxClose
vxCloseAll
vxNtxDeselect

vxBase Page 70

vxCopy

Declaration
Declare Function vxCopy Lib "vxbase.dll" (ByVal NewDbfName As

String) As Integer

Purpose
Make an exact copy of the currently selected database.

Parameters
NewDbfName is the name of the new database file that receives

the copy. The parameter may be literal string or a string variable. It
may include a complete path name. If an extension is not specified,
vxBase defaults it to ".dbf". If a file exists with the same name it is
overwritten. File names must begin with a letter.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
An exact copy is made of the selected database. This includes

deleted records. Memo files attached to the database are not copied.
Any file that matches NewDbfName is overwritten without warning.

Multiuser Considerations
The currently selected database and its index files are locked for

the duration of the operation. When it terminates, the record pointer is
reset to its value before the function was called and that record is
locked.

Example
 CustDbf% = vxSelectDbf("Custmast.dbf")
 CustNtx% = vxSelectNtx("Custmast.ntx")
 if vxCopy("Custcopy") Then
 MsgBox "Copy OK"
 Else
 MsgBox "Copy Failed"
 End If

See Also
vxAppendFrom
vxCopyStruc
vxCreateDbf
vxCreateNtx

vxBase Page 71

vxCopyStruc

Declaration
Declare Function vxCopyStruc Lib "vxbase.dll" (ByVal NewDbfName As

String) As Integer

Purpose
Create an empty file whose structure is the same as the currently

selected database.

Parameters
NewDbfName is the name of the new database file that is

created. The parameter may be literal string or a string variable. It may
include a complete path name. If an extension is not specified, vxBase
defaults it to ".dbf". An existing file with the same name is overwritten.
File names must begin with a letter.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
Commonly used to create a temporary batch file that will be used

to capture data. The captured data would then be appended to a
master file and the batch file erased. We can modify the sample code
shown under vxAppendFrom to dynamically create a batch file instead
of using a permanent file to hold temporary records.

Example
 ' create transaction batch file with the same
 ' structure as the master file
 ' --
 BatchName$ = "Tr" + SignOnId$
 FileSpec$ = MyPath$ + BatchName$ + ".dbf"
 IndexSpec$ = MyPath$ + BatchName$ + ".ntx"

 ' if file exists, error
 ' ---------------------
 If vxFile(FileSpec$) Then
 MsgBox "Error. Batch file exists!"
 Exit Sub
 Else
 ' if no error, create empty transaction file
 ' --
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()

vxBase Page 72

 Exit Sub
 Else

vxBase Page 73

 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If
 End If
 j% = vxClose() ' close master file
 TransDbf% = vxUseDbf(BatchName$)
 TransNtx% = vxUseNtx(BatchName$)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom(BatchName$)
 j% = vxClose() ' close master file
 Kill FileSpec$ ' erase batch file
 Kill IndexSpec$ ' and index
 Exit Sub
 End If
 vxClose() ' close the batch

See Also

vxAppendFrom
vxCopy
vxCreateDbf
vxCreateNtx

vxBase Page 74

vxCreateDbf

Declaration
Declare Function vxCreateDbf Lib "vxbase.dll" (ByVal NewDbfName As

String, ByVal NumFields As Integer, FStructure As FileStruc) As Integer

Purpose
Create a new database file.

Parameters
NewDbfName is the name of the new database file that is

created. The parameter may be literal string or a string variable. It may
include a complete path name. If an extension is not specified, vxBase
defaults it to ".dbf". An existing file with the same name is overwritten.
File names must begin with a letter. Their length is limited by DOS to 8
characters.

NumFields is the number of fields the new database will contain.

FStructure is a user defined type that is filled in by the
programmer with the data about the fields required to build the new
database. The FileStruc type is defined in vxbase.txt (which should be
included in your Global module). The type may be modified to suit your
needs by adding or deleting "Fldnn" definitions to conform to the
largest database (in number of fields) that your application will create.

The FileStruc type is composed of fixed length strings (each 16
characters in length) that represent the field definitions in your new
file. Each string is named Fldnn where nn represents the field number.
The structure supplied in vxbase.txt is defined with 32 fields. Add more
if necessary.

The fixed length string that defines the field structure is composed
of the following elements:

field name 10 characters
field type 1 character
field width 3 characters
field decimals 2 characters

The field type must be one of "C" for character, "N" for numeric,
"L" for logical, "D" for date, or "M" for memo. A logical field length
cannot exceed 1 character, a date field must be 8 characters wide, and
a memo field length is 10 characters. If your new file definition
contains a memo field, a file with the same name as NewDbfName
will be created with a ".dbt" extension.

vxBase Page 75

A numeric field cannot exceed 19 characters in width, which
includes the decimal point and sign position if the number can be
negative. If a numeric field has a number of defined decimals, the
minimum length of the field is the number of decimal positions plus 2
(1 for the decimal point and 1 for a leading zero). If there is a
possibility that the number may be negative, add another for the sign.

Field names must begin with a letter. The other nine positions can
be letters, numbers, or the underscore character (not a hyphen) and
may not contain embedded spaces. Trailing spaces of course are
allowed (the field name can be from 1 to 10 characters in length).

The field structure for a new database is passed to vxBase as a
user defined type because the elements in the structure must be
contiguous in memory. Visual Basic string array elements are not
necessarily contiguous in memory so we can't use an array. The fixed
length requirement for the elements of the structure simplifies and
speeds up the parsing vxBase performs to create your new database.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
Your application could be shipped without any supporting database

or index files. The first time it is run, you could create your files in a
directory specified by the user.

Example
 Dim CustFile As FileStruc
 Dim NumFields As Integer

' 1234567890123456 (alignment ruler)
 CustFile.Fld01 = "NAME C 30 0"
 CustFile.Fld02 = "ADDRESS C 30 0"
 CustFile.Fld03 = "CITY C 20 0"
 CustFile.Fld04 = "PHONE C 13 0"
 CustFile.Fld05 = "AMTOWING N 15 2"

 NumFields = 5

 If Not vxCreateDbf("custfile", NumFields, CustFile) Then
 MsgBox "Error in database creation"
 End If

See Also
vxAppendFrom
vxCopy

vxBase Page 76

vxCopyStruc
vxCreateNtx

vxBase Page 77

vxCreateNtx

Declaration
Declare Function vxCreateNtx Lib "vxbase.dll" (ByVal NewNtxName As

String, ByVal NtxExpr As String) As Integer

Purpose
Create a new index file.

Parameters
NewNtxNameis the name of the new index file that is created. The

parameter may be literal string or a string variable. It may include a
complete path name. If an extension is not specified, vxBase defaults it
to ".ntx". An existing file with the same name is overwritten. File
names must begin with a letter. Their length is limited by DOS to 8
characters.

NtxExpr is a valid xBase expression (which may be as simple as a
field name) that is passed as either a literal string or as a string
variable. The expression must evaluate to a string. The expression
must also, of course, reference field names in the currently selected
database.

Returns
The new index is created, selected, and attached to the current

database. The NxtArea is returned as an integer greater than zero if
the operation was successful. If the operation was not successful,
FALSE is returned. Always test the return value.

Note that you cannot test the return value with a NOT expression
because a number greater than zero is NOT TRUE according to Visual
Basic. Use the test format shown in the example below.

Usage
The index expression must evaluate as a string. If elements of your

index are numeric or date fields, use the xBase STR() and DTOS()
expressions to convert the fields to strings within the expression.

"custcode + datefield + numfield" is an invalid index expression if
datefield and numfield are date and numeric fields respectively. If we
assume the numeric field has a format of length 11 with 2 decimals, to
create a valid index out of the same elements, we would use "custcode
+ dtos(datefield) + str(numfield,11,2)".

vxBase Page 78

You can use this function to create new indexes for new databases
created with the vxCreateDbf function (or however) or to create
temporary indexes that you require for a one-shot report that is rarely
run. Remember to explicitly close one-shot indexes and kill them after
you are done with them.

Example
Sub TestCopy_Click ()
 Dim NtxExpr As String
 Dim Ret As Long

 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")

 ' get index expression from master file
 ' -------------------------------------
 NtxExpr = vxNtxExpr(AirTypesNtx)

 If Not vxCopyStruc("\vb\vxbtest\testcopy.dbf") Then
 MsgBox "Error in database copy struc"
 Exit Sub
 End If
 j% = vxSelectDbf(AirtypesDbf)
 j% = vxClose()

 TDbf% = vxUseDbf("\vb\vxbtest\testcopy.dbf")

 ' index create opens and selects new index and
 ' returns the index select area. Zero (FALSE)
 ' is returned if there was an error
 ' --
 TNtx% = vxCreateNtx("\vb\vxbtest\testcopy.ntx", NtxExpr)
 If TNtx% = FALSE Then
 MsgBox "Error in index create"
 j% = vxClose()
 Exit Sub
 End If

 If Not vxAppendFrom("\vb\vxbtest\airtypes.dbf") Then
 MsgBox "Error in append from"
 j% = vxClose()
 Exit Sub
 End If

 Call vxBrowse(VXFORM1.hWnd, TDbf%, TNtx%, 0, 0, 0, 0,
 "Test", Ret)
 j% = vxClose()
End Sub

See Also
vxCopy
vxCopyStruc
vxCreateDbf

vxBase Page 79

vxNtxExpr

vxBase Page 80

vxCtlGrayReset

Declaration
Declare Sub vxGrayReset Lib "vxbase.dll" ()

Purpose
Reset Windows Gray color for disabled items back to the system

standard.

Parameters
None.

Returns
Nothing.

Usage
Only used if vxCtlStyle and vxFormFrame are called to give your

application a metallic, three-dimensional look (VGA/SVGA only). When
using this style of form, the backgrounds of both forms and controls
are painted light gray - the same light gray used by Windows to show
that text and controls have been disabled. Disabled items therefore
disappear into the background.

At the start of our application, we issue a vxCtlGraySet to set the
disabled color to a darker gray and we use vxCtlGrayReset to set it
back when we exit. The disabled gray color is a Windows System Color
and as such it affects every other application you may have running as
well.

Note: This command has no effect if the system is not running on a
VGA or SVGA monitor.

Example
 Sub Form_Unload (Cancel As Integer)
 If Not vxCloseAll() Then
 Cancel = -1
 VXFORM1.Show ' redraw top level form
 Else
 Call vxCtlGrayReset
 End If
 End Sub

See Also
vxCtlGraySet
vxCtlStyle
vxFormFrame

vxBase Page 81

vxCtlGraySet

Declaration
Declare Sub vxCtlGraySet Lib "vxbase.dll" ()

Purpose
Set the Windows System color for disabled items to dark gray.

Parameters
None.

Returns
Nothing.

Usage
Only used if vxCtlStyle and vxFormFrame are called to give your

application a metallic, three-dimensional look (VGA/SVGA only). When
using this style of form, the backgrounds of both forms and controls
are painted light gray - the same light gray used by Windows to show
that text and controls have been disabled. Disabled items therefore
disappear into the background.

At the start of our application, we issue a vxCtlGraySet to set the
disabled color to a darker gray and we use vxCtlGrayReset to set it
back when we exit. The disabled gray color is a Windows System Color
and as such it affects every other application you may have running as
well.

The gray settings are done at the start and end of the application
because the entire screen is repainted whenever we set a system color.

Note: This command has no effect if the system is not running on a
VGA or SVGA monitor.

Example
 ' set system gray color with the
 ' first form we load so disabled
 ' items on our gray forms will not
 ' disappear
 ' --------------------------------
 Sub Form_Load
 Call vxCtlGraySet
 End Sub

See Also

vxCtlGrayReset
vxBase Page 82

vxCtlStyle
vxFormFrame

vxBase Page 83

vxCtlLength

Declaration
Declare Sub vxCtlLength Lib "vxbase.dll" (ByVal FieldName As String)

Purpose
Set the maximum number of characters that can be entered by the

user in a data entry box equal to the xBase field size.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
Nothing.

Usage
If used, this function must be placed in the GotFocus event

procedure for each control to set the maximum number of characters
that can be entered into a text box. The text box must of course be
associated with a vxBase field.

Example
Sub TypeCode_GotFocus ()
 ' set up text length limit
 ' ------------------------
 Call vxCtlLength("category")
End Sub

vxBase Page 84

vxCtlStyle

Declaration
Declare Sub vxCtlStyle Lib "vxbase.dll" (ControlName As Any, Mode As

Integer)

Purpose
Draw a frame around a control that gives it a three-dimensional

look.

Parameters
ControlName is the name of your form control.

Mode is one of the Global Constants defined in vxbase.txt that
defines the drawing style. VX_RECESS gives the control a recessed
look. VX_RAISE raises the control away from the form, and VX_CREASE
gives the control a creased border.

Returns
Nothing.

Usage
Gives your application a metallic, three-dimensional look (on

VGA/SVGA monitors only). Follow these steps in designing a form with
this style.

(1) Lay out your form as usual, in black and white. Group boxes and
related items (even groups of buttons) may be placed inside picture
boxes and then the picture boxes may be raised for effect.

(2) When satisfied with your item placement and font selection,
color the backgound of the form and every control a light gray with the
Window Color Palette. You may wish to make the text of labels a color
other than black to distinguish them from the data entered in their
related text boxes.

(3) remove the borders from picture boxes and text boxes that you
are going to paint with vxCtlStyle. You can't remove borders from list
boxes and group boxes. Its not absolutely necessary to do this. I just
think it looks better. If you disagree, leave the borders on. Try it both
ways. (If your application is run on an EGA monitor, vxCtlStyle draws
black borders around the controls instead of making them appear
three-dimensional).

(4) use the Form_Paint procedure to draw the controls as in the
vxBase Page 85

example below. If any form in your application contains disabled
controls, make sure you use vxCtlGraySet at the start of your
application to change the disabled color to a darker gray or the text of
your disabled controls will disappear into the light gray background.

When using a Form_Paint procedure, it is important to understand
the sequence of painting events that results in the completed display.

The Form_Load procedure is executed first. Your Form_Load
procedure does not display the form. You normally use this procedure
to initialize values that will appear in the form data boxes.

After the Form_load procedure, controls that have had values
assigned are given the focus and the data is inserted in the boxes.

Windows issues an internal WM_PAINT message to draw the form
before Visual Basic receives a Form_Paint message.

After your form has been painted, we can use the Form_Paint
procedure to enhance our controls.

What this really means is that you cannot use a Control_GotFocus
event to do anything that will affect the appearance of the form. For
example, if you had a browse table up and the user selected the Delete
record item from the browse menu, a good place to test for this would
be in the GotFocus event procedure for the first control on the form.
We could then solicit a Deletion Confirmation from the user. We
wouldn't test if Delete had been selected in the Form_Load procedure
because the data hasn't been displayed yet and we would like the user
to see the record he is deleting before we ask for verification. But if we
are using the enhanced controls that vxCtlStyle provides, the Visual
Basic Form_Paint event hasn't occurred yet so we would get a flat form
overlaid by our Confirmation message box. Not pretty.

Instead, we can test for the Delete message in the Form_Paint
procedure itself after the control borders have been drawn by
vxCtlStyle, as in the example below. Keep this sequence in mind when
you contemplate initialization procedures during any event that occurs
after the first Windows painting of the form and before Visual Basic is
informed of the Form_Paint event.

Example
Sub Form_Paint ()
 Call vxFormFrame(VXFORM2.hWnd)
 Call vxCtlStyle(TypeCode, VX_RECESS)
 Call vxCtlStyle(TypeDesc, VX_RECESS)
 Call vxCtlStyle(TypeStatus, VX_RAISE)

 ' if delete request from browse, do it now
 ' because we must let enhanced controls
 ' paint before asking for delete confirmation

vxBase Page 86

 ' --
 If TypeReturn = BROWSE_DELETE Then
 TypeDelete_Click
 End If

End Sub

See Also
vxCtlGrayReset
vxCtlGraySet
vxFormFrame

vxBase Page 87

vxDateFormat

Declaration
Declare Function vxDateFormat Lib "vxbase.dll" (ByVal DateField As

String) As String

Purpose
Convert an xBase date field to a Visual Basic date format that can

be used by Visual Basic date arithmetic and formatting functions.

Parameters
DateField is a valid date field name from the currently selected

database.

Returns
A Visual Basic string in the format DD-MMM-CCYY. For example, if

the DTOS(date) in the database field is "19910722" then the returned
value will be 22-Jul-1991. If the field name does not represent a date,
or if it is empty, the value returned will be 01-Jan-1980.

Usage
This function must be used to convert a date into a format which

Visual Basic can understand. Visual Basic contains a full complement of
functions that perform date arithmetic so there is no need for vxBase
to duplicate those functions.

Example
 ' vxDateFormat() routine returns a date in the
 ' format dd-mmm-yyyy, which the Visual Basic
 ' DateValue function inderstands. We will put
 ' the creation date into a variable so we can
 ' perform some date arithmetic on it to determine
 ' the number of days on file
 ' --
 DateCreate$ = vxDateFormat("a_cdate")
 DaysOnFile% = (DateValue(Date$) - DateValue(DateCreate$))
 + 1

 CustCdate.text = DateCreate$
 CustRdate.text = vxDateFormat("a_rdate")
 CustDays.text = Format$(DaysOnFile%, "###0")

See Also

vxReplDate

vxBase Page 88

vxDbfName

Declaration
Declare Function vxDbfName Lib "vxbase.dll" () As String

Purpose
Extract the name of the currently selected database file.

Parameters
None.

Returns
A Visual Basic string that contains the name of the database file as

it was passed to the vxUseDbf function when it was opened.

Usage
Usually for display or print purposes.

Example
 NameControl.text = vxDbfName()

See Also

vxNtxName

vxBase Page 89

vxDecimals

Declaration
Declare Function vxDecimals Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Extract the number of decimal positions defined for the specified

field.

Parameters
FieldName is a valid field name from the currently selected

database. The field should be numeric, although a zero will be returned
for any other field type.

Returns
An integer that contains the number of decimal positions.

Usage
Usually extracted to help in data validation.

Example
Sub BuyHigh_KeyPress (KeyAscii As Integer)
 ' Treat enter key as a tab
 ' ------------------------
 If KeyAscii = 13 Then
 KeyAscii = 0
 SendKeys "{Tab}"
 Exit Sub
 End If

 ' if there are any decimals defined, allow decimal point
 ' --
 If vxDecimals("b_high") > 0 And KeyAscii = Asc(".") Then
 Exit Sub
 End If

 ' limit key presses to numbers
 ' ----------------------------
 If KeyAscii < Asc("0") Or KeyAscii > Asc("9") Then
 KeyAscii = 0
 Beep
 End If
End Sub

See Also

vxFieldSize
vxFieldType

vxBase Page 90

vxDeleted

Declaration
Declare Function vxDeleted Lib "vxbase.dll" () As Integer

Purpose
Determine whether a record has been logically deleted or not.

Parameters
None.

Returns
TRUE if the record has been deleted, and FALSE if not.

Usage
When xBase records are deleted with the vxDeleteRec function,

they are only logically deleted. Every record has a Deletion Flag field
as the first byte in the record. If the vxDeleteRec function is used to
delete the record, the flag is changed from a space to an asterisk "*".
vxBrowse automatically filters these records. If the programmer is
using other record movement schemes, it is his responsibilty to ensure
that deleted records are ignored when they are supposed to be, or to
report the fact that the record has been deleted to the end user.

Deleted records are physically removed from a file only by packing
it.

A filter can be set to ignore deleted records with the vxFilter
function.

Example
 ' standard skip loop
 ' ------------------
 Do
 j% = vxSkip(1)
 If j% = FALSE Then
 MsgBox "Error on Skip. Try Reindex."
 Exit Sub
 End If
 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

See Also
vxDeleteRange
vxDeleteRec
vxPack

vxBase Page 91

vxRecall
vxZap

vxBase Page 92

vxDeleteRange

Declaration
Declare Function vxDeleteRange Lib "vxbase.dll" (ByVal StartRec As

Long, ByVal EndRec As Long) As Integer

Purpose
Physically remove the specified range of records from the currently

selected database.

Parameters
StartRec is the record number of the first record to delete.

EndRec is the last record number in the range.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
StartRec must be less than or equal to EndRec. The record

numbers refer to the physical locations of the records. If an index is in
use, it is deselected prior to the commencement of the operation. If
one or more indexes are in use, the file is reindexed after the range of
records has been removed.

Multiuser Considerations
The file and its indexes are locked for the duration of the operation.

Example
 j% = vxBottom()
 OldLastRec& = vxRecNo()
 j% = vxAppendFrom("Transfil.dbf")
 j% = vxBottom()
 NewLastRec& = vxRecNo()
 j% = MsgBox("Everything OK?", 52)
 If j% = 6 Then
 vxClose()
 Kill "Transfil.dbf"
 Else
 vxDeleteRange(OldLastRec& + 1, NewLastRec&)
 vxClose()
 End If

See Also
vxDeleteRec
vxZap

vxBase Page 93

vxDeleteRec

Declaration
Declare Function vxDeleteRec Lib "vxbase.dll" () As Integer

Purpose
Logically delete the current record.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
This function sets the Delete Flag field that is present at the front of

every xBase record to '*', which logically deletes the record. The record
is still available for use by every function except vxBrowse, which
filters all deleted records.

The record may be recalled with the vxRecall function.

Records deleted with vxDeleteRec may be physically removed from
the file with function vxPack.

The programmer is responsible for skipping by deleted records
when moving the record pointer. Alternatively, a filter may be set on
the file with vxFilter that masks deleted records from the vxSkip and
vxSeek functions.

Example
Sub TypeDelete_Click ()

 ' get user confirmation of delete
 ' -------------------------------
 j% = MsgBox("Confirm Delete", 52)
 If j% = 6 Then
 If vxDeleteRec() Then
 TypeDataClear
 TypeStatus.text = "Rec " + LTrim$(Str$(vxRecNo()))
 + " Deleted"
 Else
 TypeStatus.text = "Delete failed"
 End If
 Else
 TypeStatus.text = "Delete cancelled"
 End If
End Sub

vxBase Page 94

vxBase Page 95

See Also
vxDeleted
vxDeleteRange
vxPack
vxRecall
vxZap

vxBase Page 96

vxDouble

Declaration
Declare Sub vxDouble Lib "vxbase.dll" (ByVal FieldName As String,

DblAmount As Double)

Purpose
Convert a numeric field to a Visual Basic double value.

Parameters
FieldName is a valid numeric field name from the currently

selected database.

DblAmount is a predimensioned double value that will receive the
result of the function. See the example below.

Returns
A double value in the DblAmount parameter.

Usage
Unlike other field reference functions, this is a procedure that must

be CALLed. The user is responsible for passing a predefined double
variable to vxDouble, which receives the result of the procedure call.

The format of this function has to do with Borland C++, phantom
parameters, and Bad DLL Calling Conventions, which you probably
don't want to know about. Unfortunately, this is the only way I could
get it to work.

Example
Sub BuyerDataLoad ()
 Dim b_low As Double
 Dim b_high As Double

 CursorWait
 EnableBuyerData
 Call vxDouble("b_low", b_low)
 Call vxDouble("b_high", b_high)
 BuyLow.text = Format$(b_low, "#######0")
 BuyHigh.text = Format$(b_high, "#######0")
 BuyType.text = vxField("b_cat")
 BuyTypeDesc.text = vxField("b_desc")
 BuyCode.text = vxField("b_code")
 CursorArrow
End Sub

See Also

vxField
vxBase Page 97

vxInteger
vxLong
vxReplDouble
vxReplString

vxBase Page 98

vxEmpty

Declaration
Declare Function vxEmpty Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Test if a character field is filled with spaces or if a numeric field is

zero.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
TRUE if the character field has nothing but spaces in it or if a

numeric field evaluates to zero. FALSE if the field contains something.
The function will actually work on any kind of field (including date,
logical, and memo fields) and return TRUE if the field is composed
entirely of spaces.

Usage
Normally used to control processing of controls depending on

whether something has been entered or not.

Example
 ' if the code has already been entered, don't
 ' allow the user to edit it
 ' ---
 If vxEmpty("buy_code") Then
 BuyCode.Enabled = TRUE
 BuyCode.text = ""
 Else
 BuyCode.Enabled = FALSE
 BuyCode.text = vxField("buy_code")
 End If

See Also

vxChar
vxField

vxBase Page 99

vxEof

Declaration
Declare Function vxEof Lib "vxbase.dll" () As Integer

Purpose
Test for end of file.

Parameters
None.

Returns
TRUE if the record pointer has been moved past the last record in

the file and FALSE if not.

Usage
When skipping through a file in the forward direction, always use

vxEof to test if the last record has been read. If vxEof is TRUE, the
record buffer will point to an empty record (which can't be used for
anything).

Example
 ' skip forward one record
 ' -----------------------
 Do
 j% = vxSkip(1)
 If j% = FALSE Then

 ' if skip error, only allow exit
 ' ------------------------------
 MsgBox "Error on Skip Next. Try Reindex."
 TypeDataClear
 Exit Sub
 End If
 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 TypeStatus.text = "End of File!"
 j% = vxBottom() ' go back to last record
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If
 TypeDataLoad

vxBase Page 100

See Also
vxBof

vxBase Page 101

vxExactOff

Declaration
Declare Sub vxExactOff Lib "vxbase.dll" ()

Purpose
Turns the vxExactOn requirement OFF when using vxSeek.

Parameters
None.

Returns
Nothing. Sets an internal switch only.

Usage
Sets the ExactOn switch to OFF. OFF is the default value of this

switch. See vxExactOn for more details on exactly what it does.

Example
 vxExactOn
 If vxSeek("ABC") Then
 UpdateProcedure
 Else
 AddProcedure
 End If
 vxExactOff

See Also

vxExactOn
vxFound
vxSeek

vxBase Page 102

vxExactOn

Declaration
Declare Sub vxExactOn Lib "vxbase.dll" ()

Purpose
Sets the internal Exact switch ON.

Parameters
None.

Returns
Nothing. Internal switch setting only.

Usage
The status of the Exact switch controls whether or not vxBase will

report a successful vxSeek on a record if a partial key match is found.
For example, assume you have a customer key in the form "ABCDEF".
The vxSeek parameter could be "A", "AB", "ABC" etc. up to "ABCDEF"
and it will report the record found (if its the only one with an "A" in the
first position). In other words, vxSeek("A") will find the first record in
the file whose key begins with "A" if you pass it a single letter "A", no
matter how long the key is. There are times when you may wish to only
find a record whose key matches the vxSeek parameter exactly. This is
when you use vxExactOn. Don't forget to turn it off or things won't
work out exactly as you had planned.

If vxExactOn is TRUE, then a partially matched key will cause
vxSeek to return FALSE, and vxFound will also return FALSE. The record
pointer, however, will be set at the record whose key matched partially
if that was the case and vxEOF will be FALSE. If no part of the key was
found, vxEOF will be TRUE, vxFound will be FALSE, and the record
pointer will be pointing nowhere.

Example
 vxExactOn
 If vxSeek("ABC") Then
 UpdateProcedure
 Else
 AddProcedure
 End If
 vxExactOff

See Also

vxExactOff
vxSeek

vxBase Page 103

vxSeekSoft

vxBase Page 104

vxField

Declaration
Declare Function vxField Lib "vxbase.dll" (ByVal FieldName As

String) As String

Purpose
Extract an xBase field and convert it to a Visual Basic string.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
A Visual Basic string that contains the contents of the defined field.

Usage
Mostly used to get the contents of a character type field. Note,

however, that all xBase data is kept in character format, so you can
use this function to extract any field - including numeric, date, and
logical fields (and even a memo block reference if you wish). You could
then use Visual Basic data conversion functions to create the type of
data you are interested in.

Example
Sub BuyerDataLoad ()
 Dim b_low As Double
 Dim b_high As Double

 CursorWait
 EnableBuyerData
 Call vxDouble("b_low", b_low)
 Call vxDouble("b_high", b_high)
 BuyLow.text = Format$(b_low, "#######0")
 BuyHigh.text = Format$(b_high, "#######0")
 BuyType.text = vxField("b_cat")
 BuyTypeDesc.text = vxField("b_desc")
 BuyCode.text = vxField("b_code")
 CursorArrow
End Sub

See Also

vxInteger
vxLong
vxReplString

vxBase Page 105

vxFieldCount

Declaration
Declare Function vxFieldCount Lib "vxbase.dll" () As Integer

Purpose
Extract the number of fields in the currently selected database.

Parameters
None.

Returns
An integer with the number of fields in the current database. If no

database is selected, 0 is returned.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldName
vxFieldSize
vxFieldType

vxBase Page 106

vxFieldName

Declaration
Declare Function vxFieldName Lib "vxbase.dll" (ByVal FieldNumber As

Integer) As String

Purpose
Extract the name of the nth field in the field array of the current

database.

Parameters
FieldNumber is an index into the field array that ranges from 1 to

vxFieldCount.

Returns
A Visual Basic string that contains the name of the nth field.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldCount
vxFieldSize
vxFieldType

vxBase Page 107

vxFieldSize

Declaration
Declare Function vxFieldSize Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Extract the size of the named field.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
An integer containing the field width.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldCount
vxFieldName
vxFieldType

vxBase Page 108

vxFieldType

Declaration
Declare Function vxFieldType Lib "vxbase.dll" (ByVal FieldName As

String) As String

Purpose
Extract the type of the defined field from the current database.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
A Visual Basic string that contains the type code of the field. It will

be one of "C" for character, "N" for numeric, "D" for date, "L" for
logical, or "M" for memo.

Usage
Use in conjunction with other field statistical functions to create

listboxes of file structures, etc.

Example
 ' demonstration of file structure extraction
 ' ---
 AircustDbf = vxUseDbf("\vb\vxbtest\aircust.dbf")
 FileName.text = vxDbfName()
 For j% = 1 To vxFieldCount()
 FieldName$ = vxFieldName(j%)
 FSize% = vxFieldSize(FieldName$)
 FType$ = vxFieldType(FieldName$)
 FDec% = vxDecimals(FieldName$)
 List1.AddItem FieldName$ + " " + FType$ + " " +
 LTrim$(Str$(FSize%)) + "." +
 LTrim$(Str$(FDec%))
 Next
 j% = vxClose

 ' note: the AddItem Method would be on one line
 ' in the actual source code
 ' ---

See Also
vxDecimals
vxFieldCount
vxFieldName
vxFieldSize

vxBase Page 109

vxFile

Declaration
Declare Function vxFile Lib "vxbase.dll" (ByVal FileName As String)

As String

Purpose
Determine if the named file exists.

Parameters
FileName is a literal string or string variable that contains a

complete file name including an optional path.

Returns
TRUE if the file exists and FALSE if it does not.

Usage
Especially used in batch processing applications to determine

whether or not a btach of transactions still exists. If the batch exists, in
all likelihood it has not been processed yet and therefore a user
request to create another batch file would be denied.

Example
 ' create transaction batch file with the same
 ' structure as the master file
 ' --
 BatchName$ = "Tr" + SignOnId$
 FileSpec$ = MyPath$ + BatchName$ + ".dbf"
 IndexSpec$ = MyPath$ + BatchName$ + ".ntx"

 ' if file exists, error
 ' ---------------------
 If vxFile(FileSpec$) Then
 MsgBox "Error. Batch file exists!"
 Exit Sub
 Else
 ' if no error, create empty transaction file
 ' --
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else

vxBase Page 110

 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If
 End If
 j% = vxClose() ' close master file
 TransDbf% = vxUseDbf(BatchName$)
 TransNtx% = vxUseNtx(BatchName$)

 ' call transactions editing procedure
 ' -----------------------------------
 CollectTrans

 ' if posting now, append transactions to
 ' master file after they have been posted
 ' and then clear the batch file in preparation
 ' for the next editing session
 ' ---
 j% = MsgBox("Post Now?", 52)
 If j% = 6 Then
 PostTrans
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom(BatchName$)
 j% = vxClose() ' close master file
 Kill FileSpec$ ' erase batch file
 Kill IndexSpec$ ' and index
 Exit Sub
 End If
 vxClose() ' close the batch

See Also

vxAppendFrom
vxCopyStruc

vxBase Page 111

vxFilter

Declaration
Declare Sub vxFilter Lib "vxbase.dll" (ByVal FilterString As String)

Purpose
Define a filter expression for use in masking unwanted records from

displays, reports, etc.

Parameters
FilterString is a valid xBase expression that describes the records

you wish to retain in the current procedure.

Returns
Nothing. A pointer to the filter string is set up in the xBase

descriptor block.

Usage
Declare filters to limit the range of records that will be displayed or

printed. The most common filter is ".NOT. deleted()". A filter expression
must evaluate to a logical result. Any declared filter affects the vxTop,
vxBottom, vxSkip, vxSeek, and vxSum functions. vxGo ignores set
filters.

vxBrowse automatically filters out deleted records. The filter set by
vxFilter is in effect when a vxBrowse table is opened. If the user has
access to the Filter menu item on the vxBrowse table, he can change
the filter or remove it at will. The change or removal only effects the
current browse and when vxBase returns to your Visual Basic program,
the old filter is once again in effect.

Use filters judiciously. A filter set on a large file can slow processing
enormously. For example, if a filter was set on a large names database
to only show the name "BROWN", when the record pointer moved past
the last "BROWN" (either through program control with vxSkip or with a
down arrow by the user in a vxBrowse display), every record in the file
would have to be evaluated until the end was reached before vxBase
could determine there were no more "BROWN"s. If a filter is set on a
large file, vxBrowse tables called on that file will take some time to
initialize. vxBrowse must ascertain the number of records in the file
that pass the filter to properly set the vertical scroll bar parameters.
Study and use the SCOPE parameter available in vxTableDeclare
instead.

vxBase Page 112

Complex Filter Expressions
A complex expression is one which contains two or more elements

combined with a logical operator. For example, vxFilter("LastName =
'Smith' .and. AmtOwing > 100.00") is a complex expression which
would result in only those records that satisfy both criteria being
selected for the operation. One must take care to recognize the
precedence of logical operators. vxBase evaluates logical operators in
the following sequence: .AND., .OR., and then .NOT. Use parentheses to
group the elements of a complex expression if you are not sure of the
potential result.

For example, the filter vxFilter(".NOT. deleted() .and. 'Tenholder' $
LastName") would appear to give us all records that contain
"Tenholder" in the field LastName that are not deleted. In fact, the
expression is evaluated as ".NOT. (deleted() .and. 'Tenholder' $
LastName)" because the ".and." is evaluated first. The expression
following the .not. will ALWAYS return false unless the record is both
deleted and the last name contains "Tenholder" (which is not a record
we want anyway). .NOT. FALSE is always TRUE; therefore, every record
that is not deleted will be returned. The proper command would be
vxFilter("(.NOT. deleted()) .and. ('Tenholder' $ LastName)").

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter(".NOT. deleted() .AND. state = 'CA'")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxBrowse
vxFilterReset

vxBase Page 113

vxFilterReset

Declaration
Declare Sub vxFilterReset Lib "vxbase.dll" ()

Purpose
Removes a filter that was set with vxFilter and releases the memory

allocated to hold the expression.

Parameters
None.

Returns
Nothing.

Usage
Always used to cancel a filter that was set to perform some specific

procedure.

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter(".NOT. deleted() .AND. state = 'CA'")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxBrowse
vxFilter

vxBase Page 114

vxFormFrame

Declaration
Declare Sub vxFormFrame Lib "vxbase.dll" (Hwnd As Integer)

Purpose
Draw a three dimensional frame inside the bounds of a form.

Parameters
Hwnd is the hWnd property of an active Visual Basic form.

Returns
Nothing.

Usage
Use in conjunction with vxCtlStyle to produce metallic, three-

dimensional forms. The frame is drawn in gray scales that complement
the look of control boxes enhanced with vxCtlStyle. Applicable to VGA
and SVGA monitors only.

Example
Sub Form_Paint ()
 Call vxFormFrame(VXFORM2.hWnd)
 Call vxCtlStyle(TypeCode, VX_RECESS)
 Call vxCtlStyle(TypeDesc, VX_RECESS)
 Call vxCtlStyle(TypeStatus, VX_RAISE)

 ' if delete request from browse, do it now
 ' because we must let enhanced controls
 ' paint before asking for delete confirmation
 ' --
 If TypeReturn = BROWSE_DELETE Then
 TypeDelete_Click
 End If

End Sub

See Also
vxCtlGrayReset
vxCtlGraySet
vxCtlStyle

vxBase Page 115

vxFound

Declaration
Declare Function vxFound Lib "vxbase.dll" () As Integer

Purpose
Test the status of the last vxSeek or vxSeekSoft on the selected

database.

Parameters
None.

Returns
TRUE if the last seek on the file resulted in a find, and false if not.

Usage
Even though vxSeek and vxSeekSoft immediately return the result

of the operation, there are times when you want to know what the
result of the last seek was well after the fact of the seek. Instead of
saving the seek result in a variable, you can interrogate the status with
vxFound. vxFound acts as a sort of global variable that retains the
status of the last seek. It can even be interrogated from a module
other than the one that issued the seek,

If the file is closed and then reopened, the status of the last seek is
of course lost.

Example
 j% = vxSeek("ABCDEF")
 Call ChangeStatus
 If vxFound() Then
 UpdateProc
 Else
 AddProc
 End If

See Also
vxSeek
vxSeekSoft

vxBase Page 116

vxGo

Declaration
Declare Function vxGo Lib "vxbase.dll" (ByVal RecNum As Long) As

Integer

Purpose
Position the record pointer to the defined record and read the

record into the work buffer.

Parameters
RecNum is the physical record number to go to.

Returns
TRUE if the operation was successful, or FALSE if not. FALSE will be

returned if the record number is invalid, or if the record was locked by
another user and the current user answered "NO" to the retry query. If
FALSE is returned, the status of the record pointer and the data buffer
are undefined.

Usage
This command is especially important in a multiuser environment.

The current record number is usually saved prior to collecting edit data
from a record and then the record is unlocked to allow other users to
access it. After the edit operation, the record pointer is repositioned to
the saved record number and the record is updated.

vxGo will find deleted records and records that don't satisfy a filter
condition. In other words, if the record number is valid, it becomes the
current record.

Multiuser Considerations
The record gone to is locked.

Example
 ' multiuser update example
 ' ------------------------
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

vxBase Page 117

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

vxBase Page 118

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

See Also
vxRecNo
vxSeek
vxSeekSoft
vxSkip

vxBase Page 119

vxInteger

Declaration
Declare Function vxInteger Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Extract the defined field and convert the contents to an integer.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
An integer representing the contents of the field.

Usage
This function obviously works on numeric fields. If the field contains

decimals, they are truncated. If the value of the field is greater than
the integer maximum, the result is anybody's guess. This function also
works on character fields that contain numbers.

Example
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If

See Also

vxField
vxLong
vxReplInteger

vxBase Page 120

vxIsMemo

Declaration
Declare Function vxIsMemo Lib "vxbase.dll" (ByVal FieldName As

String) As Integer

Purpose
Determine whether there is a memo attached to the defined field.

Parameters
FieldName is a valid memo field name from the currently selected

database.

Returns
TRUE if there is a memo in the .dbt file, and FALSE if not.

Usage
Could be used to determine whether or not to display a memo for

editing.

Example
 If vxIsMemo("a_memo") Then
 SaveRec& = vxRecNo()
 Call vxMemoEdit(VXFORM2.hWnd, "a_memo")
 vxGo(SaveRec&)
 End If

See Also
vxMemoEdit

vxBase Page 121

vxJoin

Declaration
Declare Sub vxJoin Lib "vxbase.dll" (ByVal DbfArea As Integer, ByVal

NtxArea As Integer, ByVal JoinExpr As String, ByVal KeyType As Integer,
ByVal JoinTitle As String)

Purpose
Define a visual join window. This is truly one of the most exciting

features of vxBase. You can set up chains of visual relationships that
are activated through a vxBrowse window. In the sample application,
the LINK menu items give you a taste of the possibilities.

xBase programmers will recognize this function as a variation on
the SET RELATION TO command. We aren't limited to many to one
relationships, however. We can go from one to many to many to one ad
infinitum (or at least as far as our system will allow in terms of open
files).

Parameters
DbfArea is the select area of an open database that will be joined

to the currently selected database when its vxBrowse is activated.

NtxArea is the index to use with DbfArea. It also must be open.
The file being joined to must be indexed, and an index expression
must be able to be formed out of the field elements of the current
database. We are in fact setting up a relationship between the current
database and the database we are defining with this function.

JoinExpr is a valid xBase expression that defines the field or
expression (both of which must contain field elements from the current
database) that we will use to institute the join.

KeyType is one of the Global constants VX_FIELD or VX_EXPR that
are defined in vxbase.txt. If the JoinExpr is simply a field, we use
VX_FIELD; if an expression, we use VX_EXPR. We define this value to
speed up the linking operation. If the join item is only a field, much less
processing occurs when we institute the join.

JoinTitle is the caption of the joined window.

Returns
Nothing. We are attaching the join definition to the current

database descriptor block and it will only take effect when we
vxBrowse the current file.

vxBase Page 122

Usage
Suppose we have a customer file that we will use as the parent

browse window to our joins. We will define a table to limit the fields
displayed in the window and then set up a join to a subledger file. The
subledger file contains many records, each of which contains a
customer code and invoice number as the key. There could be many
records for each customer. We open the subledger file and also define
a table to limit its browse. This browse will be activated when the user
selects JOIN from the vxBrowse menu bar attached to the customer
browse table.

When we define the join for the customer file, we use the customer
code field as key into the subledger file. This is the common element.
When the join is activated by the user, a window opens that contains
nothing but the subledger records belonging to the customer who is
currently highlighted in the parent window. If we move the pointer in
the parent window to another record, then his subledger records
magically appear in the join window.

We could go on with more joins. For example, while we were
defining the table for the subledger, we could have set up another join
to an invoice file that contains the details of each invoice contained in
the subledger summary. Now, the user could pick invoices (which
would be the key from the subledger to the invoice file) from the
second window and watch their details appear in a third window.

The invoice details might contain a reference to an inventory code
number. There is nothing stopping us from defining another join to the
inventory file from the invoices file. Lots of possibilities, right?

When setting up a join sequence, it makes logical sense to start
with the lowest file in the join totem. It won't have a join to another file.
Open it, declare a table, and proceed to the next lowest file in the
hierarchy. If you are only joining two files, you can set up as in the
example below.

Note that if onscreen editing is enabled in the parent window, it
only applies to items on the parent window. You cannot perform
onscreen editing on joined windows.

Example
Sub LinkBuyToSell_Click ()
 ' Demonstration of setting up visual relationships
 ' with the vxJoin command. What we have is a file of buyers
 ' categorized by type of aircraft they are interested in.

vxBase Page 123

 ' What we are going to do is display a browse table of
 ' these buyer records and link any buyer record to
 ' another browse table of aircraft that match the the
 ' buyer aircraft type field.

 ' Conversely, the LinkSellToBuy proc does the opposite.
 ' It links the aircraft with all prospective buyers.
 ' --

 ' open file that will control the join
 ' ------------------------------------
 AirbuyerDbf = vxUseDbf("\vb\vxbtest\airbuyer.dbf")
 Airbuy2Ntx = vxUseNtx("\vb\vxbtest\airbuy2.ntx")
 ' this index is on aircraft type
 ' ------------------------------

vxBase Page 124

 ' define table to show data we are interested in
 ' --
 Call vxTableDeclare(VX_BLUE, ByVal 0&, ByVal 0&, 0, 1, 5)
 Call vxTableField(1, "Type", "b_cat", VX_FIELD)
 Call vxTableField(2, "Description", "left(b_desc,20)",
 VX_EXPR)
 Call vxTableField(3, "Low", "b_low", VX_FIELD)
 Call vxTableField(4, "High", "b_high", VX_FIELD)
 Call vxTableField(5, "Customer", "b_code", VX_FIELD)

 ' now open secondary file and define its table
 ' --
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 j% = vxSelectDbf(AirbuyerDbf)
 j% = vxClose()
 Exit Sub
 End If
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 5)
 Call vxTableField(1, "Type", "c_cat", VX_FIELD)
 Call vxTableField(2, "Code", "c_code", VX_FIELD)
 Call vxTableField(3, "Price", "c_price", VX_FIELD)
 Call vxTableField(4, "Year", "c_year", VX_FIELD)
 Call vxTableField(5, "TTSN", "c_ttsn", VX_FIELD)

 ' reselect the master file and set up the join
 ' --
 j% = vxSelectDbf(AirbuyerDbf)
 Call vxJoin(AircraftDbf, Aircraf2Ntx, "b_cat", VX_FIELD,
 "Possible Sales")

 ' this joins the Aircraft file using the index selected
 ' for it to the buyer file. The "b_cat" param is the
 ' field we will use as a key into the aircraft file and
 ' the VX_FIELD item tells vxBase that it is a field and
 ' not an expression. The last item in the call is a
 ' title for the join window.
 ' --

 ' now set up and execute the browse. The JOIN menu item
 ' is automatically enabled.
 ' --
 Call vxBrowse(VXFORM1.hWnd, AirbuyerDbf, Airbuy2Ntx,
 FALSE, TRUE, FALSE, 0, "Buyer Details",
 BuyerReturn)

 ' when we return from the browse we can ignore anything
 ' vxBase sent back to us in the BuyerReturn param
 ' ---
 j% = vxClose()
 j% = vxSelectDbf(AircraftDbf)
 j% = vxClose()

vxBase Page 125

 ' we could get fancy and get the customer record if the
 ' use hit enter and then display or edit it. Do
 ' whatever you like.
 ' --
End Sub

vxBase Page 126

See Also
vxBrowse
vxTableDeclare
vxTableField

vxBase Page 127

vxJoinReset

Declaration
Declare Sub vxJoinReset Lib "vxbase.dll" ()

Purpose
Remove a join definition from the current database descriptor block

and recover the memory.

Parameters
None.

Returns
Nothing. Affects internal parameters only.

Usage
It is only necessary to use this command if you intend to retain the

open status of the current file and perhaps issue another vxBrowse
command at some other point in your program. vxClose and vxCloseAll
automatically reset the join and recover allocated memory.

Example
 If BuyerReturn = BROWSE_ADD
 vxJoinReset
 AddProcedure
 End If

See Also
vxClose
vxCloseAll
vxJoin

vxBase Page 128

vxLockDbf

Declaration
Declare Function vxLockDbf Lib "vxbase.dll" () As Integer

Purpose
Lock the currently selected database and all of its index files.

Parameters
None.

Returns
TRUE If the operation was successful and FALSE if not. The

operation could return false if the file or any of its records is already
locked and the end user chose to abort the operation. Always test the
result before proceeding with the code that requires the exclusive use
of the file.

Usage
vxBase functions and procedures that automatically require a

locked file (such as vxPack, vxZap, etc.) are already locked. It is not
necessary to lock before performing these functions. If you require
exclusive use of a file for any reason (e.g., closing a general ledger at
the end of the year), use vxLockDbf. To unlock it, either close the file or
use vxUnlock.

Example
 If vxLockDbf() Then
 CloseTheBooks
 j% = vxUnlock()
 Else
 MsgBox "Aborting year end procedure"
 Exit Sub
 End If

See Also
vxLocked
vxLockRecord
vxUnlock

vxBase Page 129

vxLocked

Declaration
Declare Function vxLocked Lib "vxbase.dll" () As Integer

Purpose
Determine if the current file is locked or not.

Parameters
None.

Returns
TRUE if the file is locked and FALSE if not locked.

Usage
Test if a file is locked before executing a procedure which will

require exclusive use.

Example
 j% = vxSelectDbf(GlMaster)
 If vxLocked() Then
 MsgBox "File is locked. Try again later."
 Exit Sub
 Else
 If vxLockDbf() Then

 CloseBooks
 j% = vxUnlock()
 End If
 End If

See Also

vxLockDbf
vxLockRecord
vxUnlock

vxBase Page 130

vxLockRecord

Declaration
Declare Function vxLockRecord Lib "vxbase.dll" () As Integer

Purpose
Lock the current record.

Parameters
None.

Returns
TRUE if the lock was successful or FALSE if it was not.

Usage
This function could be used as a status check to ensure that the

record is indeed locked by your workstation. It would not normally be
required because vxBase automatically locks records as soon as they
are read. However, long-winded intervening code between a record
lock and processing an update to that record could necessitate an
explicit lock on a record if another user could have removed all locks
on the database during the processing of the intervening code.

Example
 j% = vxGo(SaveRec&)
 DoABunchOfStuff
 If vxLockRecord() Then
 UpdateProc
 Else
 MsgBox "Sorry. Can't lock the record"
 End If

See Also

vxLockDbf
vxLocked
vxUnlock

vxBase Page 131

vxLong

Declaration
Declare Function vxLong Lib "vxbase.dll" (ByVal FieldName As String)

As Long

Purpose
Extract the defined field and convert the contents to a long integer.

Parameters
FieldName is a valid field name from the currently selected

database.

Returns
A long integer representing the contents of the field.

Usage
This function obviously works on numeric fields. If the field contains

decimals, they are truncated. If the value of the field is greater than
the long integer maximum, the result is anybody's guess. This function
also works on character fields that contain numbers.

Example
 j% = vxGo(RecNum&)
 If OrigNum& <> vxLong("OrigRecNo") Then
 MsgBox "File has been packed"
 Call vxReplLong("OrigRecNo", vxRecNo())
 End If
 j% = vxUnlock()

See Also

vxDouble
vxField
vxInteger
vxReplLong

vxBase Page 132

vxMemoEdit

Declaration
Declare Sub vxMemoEdit Lib "vxbase.dll" (ByVal Hwnd As Integer,

ByVal FieldName As String)

Purpose
Edit an existing memo or create a new memo referenced by the

specified memo field.

Parameters
Hwnd is the hWnd property of an active Visual Basic form. This

window acts as parent to the memo window. It must be enabled and
should be big enough to accomodate a reasonable edit window
(though you can of course resize the vxMemoEdit window to whatever
your heart desires).

FieldName is a valid memo field name from the currently selected
database.

Returns
Nothing. The procedure creates a standard Windows text editing

window and puts the memo text into it. You can also create a new
memo from scratch, import standard ASCII text files into the memo
window, export the memo to a text file, copy,cut, and/or paste from
and to the clipboard. Everything you would expect (including print).

Usage
The activated memo window comes with its own menu bar. You

have plenty of options.

File Save Memo: saves the current memo into the .dbt file. If the
edited memo will not fit into the same space it formerly occupied, it is
moved to the end of the .dbt file and rewritten there. The old space is
not reclaimed. At present, a vxPack does not reclaim the space either.
I'm working on this and the next release should correct the problem.

File Import ASCII: you may import any ASCII text file available on
your system into the memo at the current cursor postiion. A standard
Windows file pick list is presented when you choose this option,
including a full disk/directory list box.

File Export ASCII: you may export the current memo to a standard
ASCII file. The file is written into the current directory. A standard

vxBase Page 133

Windows file pick list is displayed when you choose this option but it
gives you no opportunity to change the directory.

File Print: Prints the memo to the current Windows printer exactly
as it is shown in the memo edit window.

Edit Functions: All standard Windows editing functions along with
the standard accelerator keys are available. Items can be cut, copied,
and pasted to and from the clipboard (which means you can import
things into your memo from any application that can paste into the
clipboard!). An Undo option is also available when it is possible to undo
the last operation, as well as a Select All function and an Insert Date
function, which inserts a date and time stamp directly into the memo
at the current cursor position.

All in all this is a pretty snazzy memo editor. There are only a few
rules you have to follow to successfully edit memos, and they are fully
documented in the source code example below.

Memo File Intricacies
vxBase memos are compatible with those of Clipper and dBase

III/III+. Clipper memos are always stored with soft carriage return/line
feeds that fit the memo to the size of the text window it was edited in.
vxBase strips these soft returns and linefeeds from a Clipper
maintained memo and does not restore them. A vxBase memo always
fits the size of the window it resides in with automatic wordwrap.
Remember that a Windows window can be dynamically resized by the
user so it would be foolhardy to attempt to maintain an artficial end of
line within paragraphs.

If you edit a vxBase memo with a Clipper MEMOEDIT(), the soft
returns will be restored by Clipper so there should be no compatibility
problems in moving from one type of application to another using the
same files.

Example
 Sub CustMemo_Click ()
 ' Edit memo. Always have an ENABLED form showing to act
 ' as parent to the memo window. It also must have the
 ' focus. Copy the code below EXACTLY to ensure successful
 ' memoedits (changing the form and field names to fit
 ' your application of course)
 '--
 RecNum& = vxRecNo() ' save rec num to goto later
 VXFORM3.SetFocus ' make sure form has focus
 Call vxMemoEdit(VXFORM3.hWnd, "a_memo")
 j% = vxGo(RecNum&) ' reset rec buffer

vxBase Page 134

 j% = vxUnlock() ' unlock the record

 ' The vxUnlock() is only necessary if you are working in
 ' a multiuser environment. The saving of the record
 ' number and then going to same after the memoedit is
 ' ABSOLUTELY NECESSARY. After the memo edit completes,
 ' the contents of the record buffer are undefined if the
 ' user chose not to save the memo contents.
 ' --
End Sub

See Also
vxIsMemo

vxBase Page 135

vxMemoRead

Declaration
 Declare Function vxMemoRead Lib "vxbase.dll" (Byval FieldName As
String, ByVal LineWidth As Integer) As String

Purpose
Read a memo into a Visual Basic string.

Parameters
FieldName is a valid memo field name from the currently selected

database.

LineWidth is the width of a formatted line that vxBase will
terminate with a carriage return-linefeed.

If LineWidth is zero (or less than 10), no formatting is performed.
This would be your option if you were simply displaying the memo
contents in a multiline text box. Visual Basic will automatically perform
word wrap within the multiline control.

If LineWidth is greater than zero then vxBase will insert a carriage
return-linefeed pair at this position (if a space happens to occupy that
position) or back up to the first space that precedes this position and
insert the CR-LF there. Hard carriage return-linefeed pairs are left
intact.

Returns
A Visual Basic string that contains the contents of the memo.

Usage
Use LineWidth = 0 to display the memo in a multiline text box. If

you wish to print the memo, use a LineWidth equal to the number of
characters you wish to print on one line. The minimum line width is 10.
If less than 10, the result will be the same as if you had passed a zero
(i.e., no formatting).

Note: If the memo contains soft carriage returns and linefeeds, they
are stripped before vxBase starts processing.

Note: Maximum memo length is 32k. You will require 64k
(unformatted) or 96k (formatted) in text buffers to retrieve a string of
this length. If you have monster memos, beware.

vxBase Page 136

If you want the user to edit the contents of the memo in the text
box (instead of using vxMemoEdit), use vxMemoRepl to write the
memo string.

vxBase Page 137

Example
 ' Read memo into a multiline text box.
 ' Ensure that the multiline property is set
 ' to TRUE at design time (this property is
 ' read only at run time). Visual Basic will
 ' take care of word wrap for us.
 ' ---
 TextBox.Text = vxMemoRead("memofld", 0)

 ' to print the memo, we must format the
 ' lines with carriage returns and
 ' linefeeds.
 ' --------------------------------------
 MemoString$ = vxMemoRead("memofld",80)
 Printer.Print MemoString$

See Also
vxIsMemo
vxMemoEdit
vxReplMemo

vxBase Page 138

vxNtxDeselect

Declaration
Declare Function vxNtxDeselect Lib "vxbase.dll" () As Integer

Purpose
Temporarily turn off index ordering on the currently selected file.

Parameters
None.

Returns
TRUE if the operation is successful and FALSE if not.

Usage
If or any reason you wish to revert to record number ordering use

this command. Any open indexes attached to the file remain open and
unlocked. As soon as one of the indexes is selected again, index
ordering is resumed.

This function is handy if you are skipping through a file record by
record and changing key values. If index ordering is on, once a field
has been changed that affects the selected index, the next skip will
probably take you to a place you don't want to go. With vxNtxDeselect
you can change fields that affect keys at will, reselect an index, and
then reindex the file without having to close and then reopen all of the
index files.

Example
 If vxNtxDeselect() Then
 ChangeKeyValues
 j% = vxSelectNtx(BuyerNtx)
 j% = vxReindex()
 End If

See Also

vxSelectNtx
vxUseNtx

vxBase Page 139

vxNtxExpr

Declaration
Declare Function vxNtxExpr Lib "vxbase.dll" (ByVal NtxArea As

Integer) As String

Purpose
Extract the index expression for the specified, open index.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A Visual Basic string that contains the expression used to create

the specified index.

Usage
Especially useful in creating files at run time that are copies of

existing files and that are to be indexed in the same way.

Example
 If Not vxCopyStruc(BatchName$) Then
 MsgBox "Error in batch file creation"
 j% = vxClose()
 Exit Sub
 Else
 ' now create index same as master file
 ' ------------------------------------
 IndexExpr$ = vxNtxExpr(TrMasterNtx%)
 If Not vxCreateNtx(BatchName$, IndexExpr$) Then
 MsgBox "Error in index creation"
 Kill FileSpec$
 j% = vxClose()
 Exit Sub
 End If
 End If

See Also
vxCreateNtx
vxNtxName
vxUseNtx

vxBase Page 140

vxNtxName

Declaration
Declare Function vxNtxName Lib "vxbase.dll" (ByVal NtxArea As

Integer) As String

Purpose
Extract the name of the specified index file as it was passed to the

vxUseNtx function.

Parameters
NtxArea is the select area of an index file returned by vxUseNtx or

vxAreaNtx.

Returns
A Visual Basic string that contains the name of the file.

Usage
Used to head forms or reports.

Example
 ' display index items
 ' -------------------
 NtxName.text = vxNtxName(BuyerNtx)
 NtxExpr.text = vxNtxExpr(BuyerNtx)

See Also

vxAreaNtx
vxNtxExpr
vxUseNtx

vxBase Page 141

vxNumRecs

Declaration
Declare Function vxNumRecs Lib "vxbase.dll" () As Long

Purpose
Extract the number of records in the current database file.

Parameters
None.

Returns
A long integer containing the number of records in the file. This

includes logically deleted records.

Usage
Generally used as a FOR loop counter when you wish to process

every record in the file or as a statistic to determine the approximate
size of the file.

Example
 HeadSize& = (vxFieldCount() * 32) + 34
 FilSize& = (vxNumRecs() * vxRecSize()) + HeadSize&
 FileSize.text = Format$(FilSize&, "#,###,###,###")

See Also

vxFieldCount
vxRecSize

vxBase Page 142

vxPack

Declaration
Declare Function vxPack Lib "vxbase.dll" (ByVal Hwnd As Integer) As

Integer

Purpose
Remove all logically deleted records from the file and reindex.

Parameters
Hwnd is the hWnd property of an active Visual Basic Form. This

window acts as parent to a window that displays a meter bar signifying
the progress of the pack visually and in percentage complete.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
A file maintenance item that packs all files in your application

should be a standard feature of any xBase application.

Please ensure that ALL index files that belong to the dbf being
packed are open.

Once a file has been packed, deleted records are no longer
available for recall.

Always use vxAreaDbf to ensure that the file is not open in any
active task.

Multiuser Considerations
The dbf and its indexes are locked for the duration of the operation.

Example
 ' removes logically deleted records
 ' and reindexes
 ' --

 ' make sure file isn't open
 ' -------------------------
 j% = vxAreaDbf("\vb\vxbtest\airtypes.dbf")
 If j% = FALSE Then
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 j% = vxPack(VXFORM1.hWnd)
 j% = vxClose()
 End If

vxBase Page 143

See Also
vxAreaDbf
vxDeleteRec

vxBase Page 144

vxRecall

Declaration
Declare Function vxRecall Lib "vxbase.dll" () As Integer

Purpose
Remove the deleted flag from the current record.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
Undelete a record that was perhaps mistakenly deleted.

Example
 If vxDeleted() Then
 j% = MsgBox("Record deleted. Recall?", 52)

 If j% = 6 Then
 If vxRecall() Then
 UpdateRec
 End If
 End If
 End If

See Also

vxDeleted
vxDeleteRec
vxPack

vxBase Page 145

vxRecNo

Declaration
Declare Function vxRecNo Lib "vxbase.dll" () As Long

Purpose
Extract the physical record number of the current record.

Parameters
None.

Returns
A long integer that contains the current record number.

Usage
Normally used to save a record number, unlock the record, perform

some operation on the data from that record that has perhaps been
stored in form controls, and then go back to that record and update it.

It MUST be used in this fashion when editing a memo.

Example
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))
 End If
 j% = vxUnlock()
 End If

vxBase Page 146

See Also
vxGo
vxMemoEdit
vxSkip

vxBase Page 147

vxRecSize

Declaration
Declare Function vxRecSize Lib "vxbase.dll" () As Integer

Purpose
Extract the size of the record in the currently selected database.

Parameters
None.

Returns
An integer containing the record size.

Usage
Generally used as a statistic to determine the approximate size of

the file.

Example
 HeadSize& = (vxFieldCount() * 32) + 34
 FilSize& = (vxNumRecs() * vxRecSize()) + HeadSize&
 FileSize.text = Format$(FilSize&, "#,###,###,###")

See Also
vxFieldCount
vxNumRecs

vxBase Page 148

vxReindex

Declaration
Declare Function vxReindex Lib "vxbase.dll" () As Integer

Purpose
Recreate existing open index files.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
Index files are among the most volatile files in an xBase

application. They are constantly being reorganized and parts of them
are being rewritten every time we get significant changes or record
movement in large files. For this reason they are also easily corrupted,
especially by forces beyond our control (such as power failures, static
discharges, etc.).

If records don't appear in a skip procedure or a vxBrowse table that
you KNOW are there, the index is probably corrupted. Always set up a
file maintenance utility that either packs the files (which automatically
reindexes them as well) or simply reindexes.

Ensure that all files belonging to the current database are open.

Always use vxAreaDbf to ensure that the file is not open in any
active task.

Multiuser Considerations
The dbf and its indexes are locked for the duration of the operation.

Example
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 AirTypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 if Not vxReindex() Then
 MsgBox "Reindex unsuccesssful. Dbf corrupted."
 End If
 j% = vxClose()

See Also

vxAreaDbf
vxPack

vxBase Page 149

vxReplDate

Declaration
Declare Sub vxReplDate Lib "vxbase.dll" (ByVal FieldName As String,

ByVal DateString As String)

Purpose
Replace an xBase date field with a Visual Basic string formatted as

per specifications below.

Parameters
FieldName is a valid date field name from the currently selected

database.

DateString is a string representation of a date in the format dd-
mmm-yyyy.

Returns
Nothing.

Usage
Change a date field in the database. A Visual Basic serial date must

be formatted with the command Format$(SerialDate, "dd-mmm-yyyy")
before it is passed to vxBase.

All xBase data is stored in string format within the record. The date
could also be formatted with Format$(SerialDate, "yyyymmdd") and
replaced within the record with the vxReplString command. xBase
dates are stored as "yyyymmdd" internally.

The record buffer is not written to disk until an explicit vxWrite is
issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

Example
 ' set up date strings in preparation for replace
 ' --
 RDate$ = Format$(Now, "dd-mmm-yyyy")
 If CustReturn = BROWSE_ADD Then
 CDate$ = Format$(Now, "dd-mmm-yyyy")
 Else
 CDate$ = vxDateFormat("a_cdate")
 End If

vxBase Page 150

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

vxBase Page 151

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock()

See Also

vxDateFormat
vxReplString
vxWrite

vxBase Page 152

vxReplDouble

Declaration
Declare Sub vxReplDouble Lib "vxbase.dll" (ByVal FieldName As

String, DblAmount As Double)

Purpose
Replace an xBase numeric field with a Visual Basic double value.

Parameters
FieldName is a valid numeric field name from the currently

selected database.

DblAmount is a Visual Basic double value.

Returns
Nothing.

Usage
Any numeric field that contains decimal positions should be

replaced with this command.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(DoubleAmt, "#####0.00")
(or whatever data picture applies) and replaced within the record with
the vxReplString command.

The record buffer is not written to disk until an explicit vxWrite is
issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

vxBase Page 153

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

vxBase Page 154

See Also
vxDouble
vxReplString
vxWrite

vxBase Page 155

vxReplInteger

Declaration
Declare Sub vxReplInteger Lib "vxbase.dll" (ByVal FieldName As

String, IntAmount As Integer)

Purpose
Replace an xBase numeric field with a Visual Basic integer value.

Parameters
FieldName is a valid numeric field name from the currently

selected database.

IntAmount is a Visual Basic integer value.

Returns
Nothing.

Usage
Any numeric field that contains decimal positions should not be

replaced with this command. A Visual Basic integer is a whole number
with a range of -32,768 to 32,767. If the possible value of your field will
exceed this, use vxReplLong or vxReplDouble.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(IntegerAmt, "####0") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite is
issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double
 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

vxBase Page 156

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

vxBase Page 157

See Also
vxInteger
vxReplString
vxWrite

vxBase Page 158

vxReplLong

Declaration
Declare Sub vxReplLong Lib "vxbase.dll" (ByVal FieldName As String,

LongInt As Long)

Purpose
Replace an xBase numeric field with a Visual Basic long integer

value.

Parameters
FieldName is a valid numeric field name from the currently

selected database.

LongInt is a Visual Basic long integer value.

Returns
Nothing.

Usage
An xbase numeric field that contains decimal positions should not

be replaced with this command.

A Visual Basic long integer is a whole number that has a range of -
2,147,483,648 to 2,147,438,647. If the possible value of your field will
exceed this, use vxReplDouble.

All xBase data is stored in string format within the record. The
number could also be formatted with Format$(LongInt, "######0") (or
whatever data picture applies) and replaced within the record with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite is
issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

Example
 ' replace numeric values
 ' ----------------------
 Call vxReplDouble("c_price", Val((AirPrice.text)))

 ' Vis Basic Val() function always returns a double
 ' value but is forced into the type of the assigned
 ' variable if is is other than a double

vxBase Page 159

 ' ---
 NumVal% = Val((AirTTSN.text))
 Call vxReplInteger("c_ttsn", NumVal%)

 NumVal& = Val((AirSMOH.text))
 Call vxReplLong("c_smoh", NumVal&)

 j% = vxWrite() ' locks and writes
 j% = vxUnlock() ' unlocks

See Also
vxLong
vxReplString
vxWrite

vxBase Page 160

vxReplMemo

Declaration
Declare Function vxReplMemo Lib "vxbase.dll" (ByVal FieldName As

String, MemoString As String) As Integer

Purpose
Replace a memo with a Visual Basic String.

Parameters
FieldName is a valid memo field name from the currently selected

database.

MemoString is a Visual Basic string. The memo string is usually
read into a text box with vxMemoRead. The user can then edit the
string and it can be replaced with vxReplMemo.

Returns
TRUE if the operation was successful; otherwise, FALSE. This is the

only vxRepl command that is declared as a function and that returns a
value. The memo string replaces a memo in an associated .dbt file
rather than a simple record buffer replacement.

Usage
Only use if you are gathering memo data in a Visual Basic text box

(instead of using vxMemoEdit - which is much more powerful).

Example
 Dim MemoString As String
 MemoString = MemoBox.text
 j% = vxGo(RecNum&)
 If Not vxReplMemo("vxmemo", MemoString) Then
 MsgBox "Error writing memo"
 End If
 j% = vxUnlock
 j% = vxClose()

See Also
vxIsMemo
vxMemoEdit
vxMemoRead

vxBase Page 161

vxReplString

Declaration
Declare Sub vxChar Lib "vxbase.dll" (ByVal FieldName As String,

ByVal FieldString As String)

Purpose
Replace any xBase field with a Visual Basic string.

Parameters
FieldName is a valid field name from the currently selected

database.

FieldString is a string representation of the data.

Returns
Nothing.

Usage
Normally used to replace the contents of character fields.

All xBase data is stored in string format within the record. You may
use any Visual Basic data conversion functions that result in a string to
convert data before passing it to vxBase for replacement with the
vxReplString command.

The record buffer is not written to disk until an explicit vxWrite is
issued or a command is issued that changes the status of the record
pointer (such as vxGo, vxSkip, vxSeek, etc.). In a multiuser
environment, always use an explicit vxWrite to ensure the record is
available in its changed form as soon as possible.

Example
 ' set up date strings in preparation for replace
 ' --
 RDate$ = Format$(Now, "dd-mmm-yyyy")
 If CustReturn = BROWSE_ADD Then
 CDate$ = Format$(Now, "dd-mmm-yyyy")
 Else
 CDate$ = vxDateFormat("a_cdate")
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If CustReturn = BROWSE_ADD Then

vxBase Page 162

 j% = vxAppendBlank()
 End If

vxBase Page 163

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock

See Also

vxField
vxWrite

vxBase Page 164

vxSeek

Declaration
Declare Function vxSeek Lib "vxbase.dll" (ByVal SearchKey As String)

As Integer

Purpose
Find and read the record whose index key matches the defined

value.

Parameters
SearchKey is a literal string or string variable that contains the key

value you are searching for.

Returns
TRUE if the record was found and FALSE if not.

Usage
This function is a real vxBase workhorse. Most file maintenance

functions revolve around whether a particular record has a matching
key or not.

If the vxExact flag is set off (the default value), vxSeek will find
records with partial key matches. For example, to position the file to
the first record whose key field begins with the letter "A", use
vxSeek("A"). If there are no records that start with the letter "A", we
will get a FALSE return. If the search key value is not as long as the
actual key field or expression, TRUE will be returned on a partial key
match only if vxExactOff is true (either by explicitly issuing a
vxExactOff command or by never issuing a vxExactOn).

If vxExactOn has been issued, the search key must exactly match
the key field in length and content before a TRUE is returned.

If the key was found, vxFound will return true any time after the
seek (and before the next seek).

If the return is FALSE, the record pointer is undefined, the record
buffer contents are also undefined, and vxEof will return TRUE.

If a filter has been set with vxFilter, and the only record that
satisifes the seek does not satisfy the filter, the return will be FALSE. If
vxExact is OFF, and a partial key is found that satisfies both the seek
and the filter, the result will be TRUE.

vxBase Page 165

Multiuser considerations
If vxSeek finds a record, and that record is locked, it will wait

(forever) for the record to be released before returning. This is as it
should be because if we allow the user to abort a seek with the
standard vxBase Retry? query when a locked record is required, the
function would have to return a FALSE value. The programmer then
couldn't be sure whether the record really wasn't found or if the user
aborted because of a lock.

Example
Sub TypeSave_Click ()

 ' verify something in the field
 ' -----------------------------
 SeekKey$ = TypeCode.text
 If EmptyString(SeekKey$) Then
 MsgBox "Field cannot be empty"
 TypeCode.SetFocus
 j% = vxUnlock()
 Exit Sub
 End If

 ' verify unique key if adding
 ' ---------------------------
 If TypeReturn = BROWSE_ADD Then

 If vxSeek(SeekKey$) Then
 MsgBox "Duplicate Key on Add"
 TypeCode.SetFocus
 j% = vxUnlock()
 Exit Sub
 End If
 End If

 ' Data passed. Put it away
 ' ------------------------
 CursorWait
 If TypeReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 End If

 ' notice the brackets around the control property
 ' below which gets at the data contained therein
 ' --
 Call vxReplString("category", (TypeCode.text))
 Call vxReplString("catname", (TypeDesc.text))
 j% = vxWrite()

 ' Update status box
 ' -----------------
 If TypeReturn = BROWSE_ADD Then
 TypeStatus.text = "Record " + LTrim$(Str$(vxRecNo())) + " added"
 Else

vxBase Page 166

 TypeStatus.text = "Record " + LTrim$(Str$(vxRecNo())) + " saved"
 End If

 ' Update Button Status
 ' --------------------
 TypeSave.Enabled = TRUE
 TypeCancel.Enabled = TRUE
 TypeAdd.Enabled = TRUE
 TypeDelete.Enabled = TRUE
 TypeReturn = BROWSE_EDIT
 j% = vxUnlock() ' ensure database unlocked
 CursorArrow
End Sub

See Also

vxExactOff
vxExactOn
vxFound
vxSeekSoft

vxBase Page 167

vxSeekSoft

Declaration
Declare Function vxSeekSoft Lib "vxbase.dll" (ByVal SearchKey As

String) As Integer

Purpose
Find a record whose key field matches or partially matches the

defined search string. If the key is not found, position the record
pointer to the next highest key value.

Parameters
SearchKey is a literal string or string variable that contains the key

value you are searching for.

Returns
TRUE if a record is read into the buffer. The search key may or may

not match the key field depending on the type of find. If no record is
found, either partially matched, matched, or the record after, then
FALSE is returned.

Usage
vxSeekSoft differs from vxSeek in that a TRUE condition is returned

even if the key is not matched and there is a record with a key greater
than the search key in the file.

The following conditions apply:
(1) if partial or exact match, vxSeekSoft returns TRUE, vxFound

returns TRUE and vxEof returns FALSE.
(2) if not matched, and the record pointer is positioned to the

record with a key higher than the search key, vxSeekSoft returns TRUE,
vxFound returns FALSE, and vxEof returns FALSE.

(3) if there is no record with a higher key value, vxSeekSoft returns
FALSE, vxFound returns FALSE, and vxEof returns TRUE.

This command is especially useful for delimiting a subset of records
within a large database. Filters are inherently slow, and an internal
routine such as that shown in the example could speed up processing
enormously, given a file with a large number of records. There are
other ways to accomplish the same result, of course, but this is one of
them.

vxExactOn has no effect on vxSeekSoft.

Multiuser Considerations
vxBase Page 168

If a record is found, it is locked.

Example
 ' finds the range of records in this
 ' file that all have "ABC" as the first
 ' part of the key
 ' --------------------------------------
 SrchKey$ = "ABC"

 ' find the first record
 ' ---------------------
 If Not vxSeek(SrchKey$) Then
 Exit Sub
 Else
 StartRec& = vxRecNo()

 ' make the last character in the key 1 binary number
 ' greater than the actual key and do a soft seek
 ' --
 SoftKey$ = Mid$(SrchKey$,1,2) +
 Chr$(Asc(Mid$(SrchKey$,3,1)) + 1)
 j% = vxSeekSoft(SoftKey$)

 ' As long as vxEof is false, we hit something
 ' ---
 If Not vxEof() Then
 vxSkip(-1) ' back up one rec to last ABC
 EndRec& = vxRecNo()
 Else
 EndRec$ = StartRec$
 End If

 ' now process the range
 ' ---------------------
 RangeProc
 End If

See Also

vxSeek

vxBase Page 169

vxSelectDbf

Declaration
Declare Function vxSelectDbf Lib "vxbase.dll" (ByVal DbfArea As

Integer) As Integer

Purpose
Make the open database identified by the passed area handle the

current database.

Parameters
DbfArea is a valid area handle returned from vxUseDbf when the

file was opened or by vxAreaDbf.

Returns
The select area of the previously selected database or zero (0) if

there was no previously selected database. If the DbfArea parameter is
invalid, subsequent operations will be undefined (like in CRASH).

Usage
Almost every vxBase function works on the selected database only.

There is only ONE selected database at any given time, even though
many dbf files may be open. Whenever you want to work on a different
database, you must select it first.

Each database opened (with vxUseDbf) or selected (with
vxSelectDbf) while a Visual Basic form is active is automatically
attached to that window. If the user has a number of windows open,
and switches between them at will, any vxBase commands that
reference a database will automatically select the correct database. To
use this automation effectively, you MUST:

(1) select the database as the first command in the FORM_LOAD
procedure.

(2) select the database as the first command in the FORM_PAINT
procedure.

(3) use vxWindowDereg in the FORM_UNLOAD procedure.

Each of these requirements is discussed in detail in the MultiTasking
and MultiUser Considerations section.

Example
 OldDbf% = vxSelectDbf(AirtypesDbf)
 CurrRec& = vxRecNo()
 If OldDbf% > 0 Then
 j% = vxSelectDbf(OldDbf%)

vxBase Page 170

 End If

vxBase Page 171

See Also
vxAreaDbf
vxAreaNtx
vxSelectNtx
vxUseDbf
vxUseNtx
vxWindowDereg

vxBase Page 172

vxSelectNtx

Declaration
Declare Function vxSelectNtx Lib "vxbase.dll" (ByVal NtxArea As

Integer) As Integer

Purpose
Make the open index file identified by the passed area handle the

current index for use with the current database.

Parameters
NtxArea is a valid area handle returned by vxUseNtx when the file

was opened or by vxAreaNtx.

Returns
The select area of the previously selected index for the current

database, or zero (0) if there was no previously selected index. If the
NtxArea parameter is invalid, subsequent operations will be undefined
(like in CRASH).

Usage
Whenever an index is opened, it is automatically attached to the

current database and selected. The last index opened is therefore the
one selected for use. If there is more than one index open, the
sequencing may be changed by selecting the new index with this
command.

If another database has been selected, and then the dbf that this
index belongs to is reselected, it is not necessary to also reselect the
index. The index in use will remain the same until another is selected.

Example
 AirbuyerDbf = vxUseDbf("airbuyer.dbf")
 Airbuy1Ntx = vxUseNtx("airbuy1.ntx")
 Airbuy2Ntx = vxUseNtx("airbuy2.ntx")

 ' the current sequence is in airbuy2 order
 ' --
 DisplayBuyer

 ' change the sequence
 ' -------------------
 j% = vxSelectNtx(Airbuy1Ntx)
 DisplayBuyer

 ' now select record number order
 ' ------------------------------
 j% = vxNtxDeselect

vxBase Page 173

 DisplayBuyer

 ' and then put it back the way it was
 ' -----------------------------------
 j% = vxSelectNtx(Airbuy2Ntx)

See Also
vxAreaNtx
vxNtxDeselect
vxSelectDbf
vxUseNtx

vxBase Page 174

vxSetErrorCaption

Declaration
Declare Sub vxSetErrorCaption Lib "vxbase.dll" (ByVal CaptionString

As String)

Purpose
Change the caption presented on vxBase error message boxes to

whatever the user desires. The default value is "vxBase Error".

Parameters
CaptionString is the new string that will be displayed as the

caption in every vxBase error message box. Note that this is a SYSTEM
wide command which affects every active vxBase task.

Returns
Nothing.

Usage
Should be issued in the FORM_LOAD procedure for you startup

form.

Example
 Call vxSetErrorCaption("Real Estate System Error")

vxBase Page 175

vxSetupPrinter

Declaration
Declare Sub vxSetupPrinter Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Access standard Windows printer setup dialog.

Parameters
Hwnd is the hWnd property of an active Visual Basic form. This

window acts as parent to the printer select dialog box. It must be
enabled.

Returns
Nothing.

Usage
Especially useful for setting form lengths or changing printers (if

you have more than one printer port) from within your vxBase
application. The user doesn't have to go to the Windows control panel
to change printer configuration.

It is not possible to activate another printer if you have more than
one printer defined for the same port. The user will still have to go to
the control panel to effect this change.

Example
 ' PrSetup is a menu item or a button
 ' ----------------------------------
 Sub PrSetup_Click ()
 Call vxSetupPrinter(VXFORM1.hWnd)
 End Sub

vxBase Page 176

vxSkip

Declaration
Declare Function vxSkip Lib "vxbase.dll" (ByVal NumRecs As Long) As

Integer

Purpose
Skip forwards or backwards the specified number of records.

Parameters
NumRecs is the number of records to skip. If negative, the skip is

backwards. If positive, the skip is forwards.

Returns
TRUE if successful and FALSE if not.

Usage
Always used to control record by record processing. If an index is

selected, the skip follows the index sequence, otherwise record numer
sequence is employed.

If a filter is active, vxSkip skips by records that don't pass the filter.

Always use vxEof and vxBof to test whether the end of file has
been reached (when skipping forwards) or the beginning of file has
been reached (when skipping backwards). Note that if vxEof is true, it
will be necessary to position the record to the last record in the file
with vxBottom if you wish to have a valid record in the buffer. If vxBof
is TRUE, then the record buffer will contain the first record in the file.

Multiuser Considerations
If the skip was successful, the record is locked.

Example
 ' skip forward one record
 ' -----------------------
 Do
 If Not vxSkip(1) Then

 ' if skip error, exit
 ' -------------------
 MsgBox "Error on Skip Next. Try Reindex."
 Exit Sub
 End If

 If vxEof() Then Exit Do
 Loop Until Not vxDeleted()

vxBase Page 177

vxBase Page 178

 ' test for end of file
 ' --------------------
 If vxEof() Then
 Beep
 TypeStatus.text = "End of File!"
 j% = vxBottom()
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If

See Also

vxBof
vxEof
vxGo
vxSeek
vxSeekSoft

vxBase Page 179

vxSum

Declaration
Declare Sub vxSum Lib "vxbase.dll" (ByVal FieldName As String,

DblAmount As Double)

Purpose
Sum the contents of a numeric field for all records that satisfy the

filter condition (if any).

Parameters
FieldName is a valid numeric field name from the currently

selected database.

DblAmount is a pre-dimensioned Visual Basic double variable that
will hold the result of the procedure.

Returns
No explicit return. The sum is stored in the variable sent in the call

to the procedure.

Usage
Extract the sum of the defined field. May be used with a filter to

limit the sum to a subset of records in the database.

After the operation has completed, the record pointer is restored to
its condition prior to the call.

Multiuser Considerations
The database is locked for the duration of the operation.

Example
 Dim CalifTotal As Double

 ' this routine adds up the amounts owing by customers
 ' in California
 ' ---
 Call vxFilter(".NOT. deleted() .AND. state = 'CA'")
 CalifTotal = 0
 j% = vxTop()
 Call vxSum("amtowing", CalifTotal)
 TotalBox.text = Format$(CalifTotal, "#######0.00")
 vxFilterReset

See Also

vxFilter

vxBase Page 180

vxTableDeclare

Declaration
Declare Sub vxTableDeclare Lib "vxbase.dll" (ByVal ColorRef As Long,

BofExpr As Any, EofExpr As Any, ByVal Scope As Integer, ByVal Quick As
Integer, ByVal Columns As Integer)

Purpose
Set up a custom table for use by the vxBrowse function. The

vxTableDeclare command must be followed by vxTableField commands
(as many as specified in the Columns parameter) to define the browse
table columns.

Parameters
ColorRef is the color to be used for the browse table column

heads. There are three Global constants defined in vxbase.txt which
may be used: VX_RED, VX_BLUE, and VX_GRAY.

BofExpr is an xBase expression controlling beginning of file logic
(in addition to vxBof() - which is automatic). BofExpr is defined As Any
because in most cases it will be passed as NULL (i.e., ByVal 0&). This
parameter is especially useful in limiting the browse table to a subset
of the records contained in the file being browsed. For example,
suppose you had an accounts receivable subledger with a file key that
was composed of two fields, CustCode + InvoiceNo. Now suppose you
wish to limit the display to only those subledger records that belonged
to customer "ABCDEF". You could either set a filter (which is not very
efficient - especially if its a big file -in that a user pressing a page up
key when he is at the first record in the file may have to wait a few
minutes before vxBase satisfied itself that there were no records above
that met the filter) or you can define a BofExpr as "CustCode <
'ABCDEF'". If a BofExpr is defined, every record must pass the BofExpr
test. Now when our user is at the first record in the subset and presses
the page up key, vxBrowse will skip back one record and test the
BofExpr. If it fails, vxBrowse goes back to where it was and beeps. The
artificial beginning of file set in this manner is evaluated and acted
upon virtually instantaneously. A filter would skip backwards until it
reached the real beginning of file before determining that there was
nothing left to display. Notice that it is not necessary to add the phrase
" .OR. BOF()" to the xBase expression because vxBrowse always
evaluates the actual BOF() in addition to BofExpr.

EofExpr is an xBase expression controlling end of file logic (in
addition to vxEof() - which is automatic). It is normally used in
conjunction with BofExpr to limit the vxBrowse display to a subset of

vxBase Page 181

records in the file. In the example shown above, EofExpr would be
"CustCode > 'ABCDEF'". Now when the user hits the page down key,
the first record that has a CustCode greater than "ABCDEF" would
effectively stop the display, just as the BofExpr does when moving in
the opposite direction. Notice that it is not necessary to add the phrase
" .OR. EOF()" to the xBase expression because vxBrowse always
evaluates the actual EOF() in addition to EofExpr. If the scope of the
display is every record in the file, you would pass a NULL value (i.e.,
ByVal &0).

Scope is an integer that effectively controls the action vxBrowse
takes when the user presses the Home or End keys (or uses the
vertical scroll bar thumb to position the file to the top or bottom).

Always use 0 (zero) when the scope you are interested in is every
record in the file, or when every record in the file has a unique single
element key. If you wish to limit the scope to a subset of records as in
the discussion of BofExpr and EofExpr above, then set Scope to the
length of the key prefix that is common to the subset. In the example
above, the subledger key is composed of two elements - CustCode +
InvoiceNo. There are probably many records in the file with the same
CustCode but different InvoiceNos and we only want to look at the ones
with CustCode = "ABCDEF". This is the common prefix in every key we
are interested in; therefore, the Scope parameter is set to 6 (the
length of the common part of the key).

When a Scope other than zero is passed to vxBrowse via the
vxTableDeclare command, vxBrowse reacts to a Home request by
issuing a vxSeek to the file with a value in the searchkey that is equal
to the current key for the length specified by Scope. This will position
the record pointer to the first record in our subset (because we get a
partial match). When the user requests a positioning to End, the partial
key is extracted from the current record ("ABCDEF") and a binary 1 is
added to the last character (which makes it a "G"). A vxSeekSoft is
then issued which positions the record pointer to the record
immediately following our defined subset and vxBrowse then skips
back one record and, voila , we are at the end of our subset. Slick! Sure
beats filters.

Quick is an integer that specifies the character position of the key
vxBrowse uses to construct Quick keys. A zero will turn quick key off
(and we don't want to do that on indexed files). If the key to be used
for the quick search starts at the first character position of the current
index expression, use 1 (which will be most of the time). If we are
interested in only a subset of records (as in the example above), then
the unique part of the key - InvoiceNo - is what the user should enter to
find the record he is looking for. If we defined the quick key as 1 in this

vxBase Page 182

case, and the user wanted to find InvoiceNo "1001", then he would
have to enter "ABCDEF1" just to position the file to the first invoice that
started with a "1". When all of the records in our subset have a
common prefix, we use the length of that prefix plus one (in this case
7) to tell vxBrowse that the first 6 positions are always the same so it
automatically prepends them to the entered quick key. We don't even
have to display the CustCode field in our table and we can find any
invoice we want that belongs to this customer by actually entering the
invoice number.

Columns is an integer that specifies how many columns our table
will have. This number determines the amount of memory to allocate
to hold our table definition and it also indicates that this many
vxTableField commands will immediately follow. We need 1 vxTableField
command for every number passed in this parameter.

Returns
Nothing.

Usage
Some of the concepts discussed above in relation to limiting your

displays to a subset of records without having to set a filter may seem
confusing at first, but a little study of the example shown below and its
effect in the sample program will add clarity to the situation.

When scoping a browse display, the only thing you MUST do is
position the record pointer to the first record in the group and then
pass that record number to the vxBrowse proc (the StartRec&
parameter). See the Scoped Complex Example below.

Declared tables attached to a database are also used by vxBrowse
if this file happens to be the object of a relational Join.

 vxTableDeclare, vxTableField, vxJoin, and vxBrowse provide you with
a browse object that is unparalleled in the xBase world.

Simple Example
' Open aircraft types file
' ------------------------
 AirtypesDbf = vxUseDbf("\vb\vxbtest\airtypes.dbf")
 If AirtypesDbf = FALSE Then
 MsgBox "Error Opening airtypes.dbf. Aborting."
 Exit Sub
 End If
 AirtypesNtx = vxUseNtx("\vb\vxbtest\airtypes.ntx")
 If AirtypesNtx = FALSE Then
 MsgBox "Error Opening airtypes.ntx. Aborting."

vxBase Page 183

 j% = vxClose()
 Exit Sub
 End If

' Declare types table to get nice headings
' (TableDeclare works on currently selected DBF)
' --
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)
 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)

 ' Open a browse table with full editing capabilities
 ' --
 TypeReturn = 0 ' declared as GLOBAL so VXFORM2 can
 ' interrogate

 ' The menu Form VXFORM1 must be visible because we need a
 ' parent for our browse
 ' ---
 If Not VXFORM1.Visible Then VXFORM1.Show

 ' Execute the browse routine (using table declared above)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types",
 TypeReturn)

vxBase Page 184

Scoped Complex Example
Sub BuyRecs_Click ()

 ' Close states file to free some handles
 ' --------------------------------------
 j% = vxSelectDbf(AirstateDbf)
 j% = vxClose() ' also does vxTableReset

 ' open airtypes file and buyer file
 ' ---------------------------------
 TypesOpen
 BuyerOpen

 j% = vxSelectDbf(AirbuyerDbf)
 j% = vxSelectNtx(Airbuy1Ntx)
 CustKey = CustCode.text

 ' Set up browse table limited to buyer records
 ' that match the CustKey. We do this by sending
 ' the vxTableDeclare proc a beginning of
 ' file expression and an end of file expression.
 ' ---
 BofExpr$ = "b_code < '" + CustKey + "'"
 EofExpr$ = "b_code > '" + CustKey + "'"

 Call vxTableDeclare(VX_RED, ByVal BofExpr$, ByVal
 EofExpr$, 6, 7, 4)

 ' The vxBrowse object now knows to limit the
 ' records in the table to those that have b_code
 ' values equal to CustKey. We also scope the records
 ' with the "6" following the EofExpr and set the quick
 ' key index to "7". An explanation follows:
 '
 ' The key we are going to use to browse this file is
 ' b_code + b_cat, whose elements are 6 long and 3 long
 ' respectively. Every record we are interested in has
 ' the same b_code (i.e., they all belong to the same
 ' customer). Setting the scope index to 6 determines
 ' the action to be taken when the HOME or END keys
 ' are depressed. The normal value is 0, which takes
 ' you to the first and last logical records in the
 ' file when HOME or END is hit. If other than
 ' zero, then the HOME key will result in a softseek
 ' on the file to the current key for the length
 ' specified by the scope index. The END key will
 ' softseek to the current key plus 1 and then skip
 ' back one record to position the record pointer to
 ' the last record in the group.
 '
 ' The quick index is set to 7, which is the first
 ' position of the aircraft type code in the key. We
 ' aren't even going to display the b_code for the
 ' buyer records. Setting the quick index to 7 means
 ' that the common part of the key for the group of
 ' records we are interested in (the first 6 which form

vxBase Page 185

 ' the customer code), will be prepended to the
 ' quick keys entered at the keyboard before a seek
 ' is done on the file. Makes sense, huh?

 ' When scoping a file in this fashion, the only thing you
 ' MUST do is position the record pointer to the first
 ' record in the group and then pass that record number
 ' to the vxBrowse proc (the StartRec& parameter).

vxBase Page 186

 Call vxTableField(1, "Type", "b_cat", VX_FIELD)
 Call vxTableField(2, "Description", "b_desc", VX_FIELD)
 Call vxTableField(3, "Low", "b_low", VX_FIELD)
 Call vxTableField(4, "High", "b_high", VX_FIELD)

 ' Because we are interested in only a subset of the
 ' possible records in the buyer file, we have to
 ' determine ourselves whether there are any records in
 ' the file that match the group. If not, we ask the user
 ' if he wants to add a record. vxBrowse normally does
 ' this, but the file must be empty before it asks the
 ' question and sets the return value accordingly.
 ' --
 BuyerRec = 0 ' global var
 If vxSeek(CustKey) Then
 BuyerRec = vxRecNo() ' set for browse start rec
 VXFORM3.Hide
 BrowseBuyers
 Else
 j% = MsgBox("No buyer records. Add?", 52)
 If j% = 6 Then
 VXFORM3.Hide
 BuyerReturn = BROWSE_ADD
 VXFORM4.Show
 Else
 j% = vxClose()
 StatesOpen
 j% = vxSelectDbf(AircustDbf)
 End If
 End If
End Sub

See Also

vxBrowse
vxJoin
vxTableField
vxTableReset

vxBase Page 187

vxTableField

Declaration
Declare Sub vxTableField Lib "vxbase.dll" (ByVal ColIndex As

Integer, ByVal ColHead As String, ByVal ColExpr As String, ByVal
ColType As Integer)

Purpose
Define the contents of table columns declared by vxTableDeclare

for use with vxBrowse.

Parameters
ColIndex is the sequence number of the column from left to right.

The first index number is 1 (NOT ZERO).

ColHead is a string representing the column header. The width of
the column is calculated by using the greater of the width of the
column head and the data represented by the field or expression.

ColExpr is a string defining the data to be displayed. It may be as
simple as a field name (not a memo) or a complex xBase expression.
Arithmetic operations may be performed on groups of fields with the
appropriate expression (e.g., "Current + PastDue"). Conditional IIF
expressions are also allowed. For example, the expression
"IIF(DTOC(RecdDate) = ' / / ', 'No Date ', DTOC(RecdDate))" would
display "No Date " if the field was empty or the actual date if it was not
empty. Notice in this example that both the true and false results of the
IIF expression are character strings and that they both would result in
displays that are 8 characters long. Any xBase expression resulting in a
character, numeric, or date data type is allowed. Expressions that
return logical results or that reference memo fields are not allowed.

ColType defines the type of ColExpr to vxBrowse. Use one of the
Global constants VX_FIELD or VX_EXPR defined in vxbase.txt to tell
vxBrowse that the data being defined is simply a field or an xBase
expression. This speeds processing somewhat because simple fields do
not have to go through an evaluation and pseudo compilation.

Returns
Nothing.

Usage
The number of field definitions following the vxTableDeclare

statement must conform to the number sent to vxBase in the
vxTableDeclare Columns parameter.

vxBase Page 188

If onscreen editing is allowed in your vxBrowse table that will use
these field definitions, remember that data resulting from an
expression (ColType = VX_EXPR) may not be edited in this fashion.
You can use this to your advantage by defining columns you do not
want the user to edit as VX_EXPR.

 Tables declared and then used as a resultant Join window may not
have any fields edited onscreen. This is an obvious point because
joined realtional windows are not explicitly called by a vxBrowse
statement anyway.

Example
 SEE THE EXAMPLES IN vxTableDeclare
 ON THE PREVIOUS PAGE.

See Also
vxBrowse
vxJoin
vxTableDeclare
vxTableReset

vxBase Page 189

vxTableReset

Declaration
Declare Sub vxTableReset Lib "vxbase.dll" ()

Purpose
Remove a table definition attached to the current vxBase descriptor

block and free the associated memory.

Parameters
None.

Returns
Nothing.

Usage
This statement is only necessary if you wish to leave the file open

and perhaps define a different table somewhere else in your program.
If the file is closed with vxClose or vxCloseAll, the allocated memory is
freed automatically.

Example
 Call vxTableDeclare(VX_RED, ByVal 0&, ByVal 0&, 0, 1, 2)
 Call vxTableField(1, "Type", "category", VX_FIELD)
 Call vxTableField(2, "Description", "catname", VX_FIELD)
 TypeReturn = 0 ' declared as GLOBAL so VXFORM2 can
 ' interrogate
 If Not VXFORM1.Visible Then VXFORM1.Show

 ' Execute the browse routine (using table declared above)
 ' ---
 Call vxBrowse(VXFORM1.hWnd, AirtypesDbf, AirtypesNtx,
 TRUE, TRUE, TRUE, 0, "Aircraft Types",
 TypeReturn)
 vxTableReset

See Also

vxClose
vxCloseAll
vxJoinReset

vxBase Page 190

vxTop

Declaration
Declare Function vxTop Lib "vxbase.dll" () As Integer

Purpose
Position the record pointer to the first record in the current

database. If an index is active, this is the first logical record. If there is
no index active, the first physical record is retrieved.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not. If the file is

empty, FALSE will be returned. FALSE will also be returned if the record
is locked and the user chose not to retry the operation.

Usage
After opening a file, the record buffer content is undefined until an

explicit record operation is performed. This is usually vxTop.

If a filter is active, vxTop will attempt to find the first record in the
file that satisfies the filter.

Multiuser Considerations
A successful vxTop locks the record.

Example
 ' test for beginning of file
 ' --------------------------
 If vxBof() Then
 Beep
 TypeStatus.text = "Beginning of File!"
 j% = vxTop()
 Else
 TypeStatus.text = "Skipped to record " +
 LTrim$(Str$(vxRecNo()))
 End If

See Also

vxBottom

vxBase Page 191

vxTrue

Declaration
Declare Function vxTrue Lib "vxbase.dll" (ByVal FieldName As String)

As Integer

Purpose
Determine whether a logical field in the current database contains

a true or false value.

Parameters
FieldName is a valid logical field name from the currently selected

database.

Returns
TRUE if the field contains an xBase logical true value (t, T, y, Y) or

FALSE if not (either f, F, n, N, or blank).

Usage
Logical fields can easily be used to set form check boxes or radio

buttons.

Example
 ' Return from logical field interrogation
 ' vxTrue() is -1 (TRUE) or 0 (FALSE).
 ' By using the unary negation operator
 ' we will transform any -1 values to the
 ' checkbox value 1, which means "selected"
 ' --
 CustBuyer.Value = -vxTrue("a_buyer")
 CustSeller.Value = -vxTrue("a_seller")

See Also
vxField

vxBase Page 192

vxUnlock

Declaration
Declare Function vxUnlock Lib "vxbase.dll" () As Integer

Purpose
Remove all locks on the currently selected database, including file,

record, and index locks.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
All vxBase record positioning functions automatically lock the

record after it has been read into the record buffer. In a multiuser
situation, you should get the record, transfer the fields you wish to use
to form controls, and then unlock the record to make it and the file
available to other users. See the Multiuser Considerations section in
this manual for methods that ensure proper record maintenance in a
multiuser environment.

Example
 If vxSeek("ABC") Then ' find the record to update
 RecNum& = vxRecNo() ' save the record number
 Sig% = vxInteger("CustSig") ' and the signature
 Name.text = vxField("Name) ' store the form vars
 Status.text = vxfield("Stat")

 ' now unlock the record
 ' ---------------------
 j% = vxUnlock()

 ' now perform the update on the vis basic form
 ' --
 CustRecordUpdate

 ' now retrieve the record and test if anyone else
 ' has changed it
 ' ---
 j% = vxGo(RecNum&)
 If Sig% <> vxInteger("CustSig") Then
 MsgBox "Another user beat you to it. Redo!"
 Else
 Call vxReplString("Name", (Name.text))
 Call vxReplString("Stat", (Status.text))
 Call vxReplInteger("CustSig", (Sig% + 1))

vxBase Page 193

 End If
 j% = vxUnlock()
 End If

vxBase Page 194

See Also
vxLockDbf
vxLocked
vxLockRecord

vxBase Page 195

vxUseDbf

Declaration
Declare Function vxUseDbf Lib "vxbase.dll" (ByVal DbfName As String)

As Integer

Purpose
Open a database file.

Parameters
DbfName is a either a string variable that contains the name of

the file (including an optional path specification) or a literal string. If no
file extension is supplied, vxUseDbf defaults to ".dbf".

Returns
FALSE if the open attempt was not successful. Otherwise, an

integer is returned between 1 and 24 that defines the select area
handle to the file in all subsequent vxBase operations. If the same file
has a vxUseDbf command issued more than once without closing, the
same integer is returned. This means of course that only one instance
of an open file can be active at a given time.

Usage
The file is opened, selected, and registered with the vxBase Task-

Window manager. The select area handle should be retained in a
GLOBAL integer for use with that file throughout your application. Use
variable names that describe the file.

The first time the file is opened, the result should be tested to
ensure that a valid file exists where you think it should be.

After a file is opened, the contents of the record buffer are
undefined. An explicit record positioning command must be issued to
fill the record buffer (such as vxTop).

See the discussion under "Multitasking and Multiuser
Considerations" for more information on how vxBase controls
databases attached to multiple windows.

Example
 ' open aircraft file
 ' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End

vxBase Page 196

 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

vxBase Page 197

See Also
vxAreaDbf
vxAreaNtx
vxSelectDbf
vxUseNtx

vxBase Page 198

vxUseNtx

Declaration
Declare Function vxUseNtx Lib "vxbase.dll" (ByVal NtxName As String)

As Integer

Purpose
Open an index file and attach it to the currently selected database.

Parameters
NtxName is a either a string variable that contains the name of the

file (including an optional path specification) or a literal string. If no file
extension is supplied, vxUseDbf defaults to ".ntx".

Returns
FALSE if the file could not be opened. If the open is successful, an

index area handle is returned that should be retained for all
subsequent operations using this index file.

Usage
The defined index file must belong to the database that is currently

selected. The last opened index file becomes the selected index until
changed with vxSelectNtx or vxNtxDeselect.

The select area handle should be retained in a GLOBAL integer for
use with that file throughout your application. Use variable names that
describe the file.

Example
' open aircraft file
' ------------------
 AircraftDbf = vxUseDbf("\vb\vxbtest\aircraft.dbf")
 If AircraftDbf = FALSE Then
 MsgBox "Error Opening aircraft.dbf. Aborting."
 End
 End If
 Aircraf1Ntx = vxUseNtx("\vb\vxbtest\aircraf1.ntx")
 Aircraf2Ntx = vxUseNtx("\vb\vxbtest\aircraf2.ntx")

See Also
vxAreaNtx
vxNtxDeselect
vxSelectNtx

vxBase Page 199

vxWindowDereg

Declaration
Declare Sub vxWindowDereg Lib "vxbase.dll" (ByVal Hwnd As Integer)

Purpose
Deregister a database select area from the vxBase Task-Window

manager.

Parameters
Hwnd is the hWnd property of the Visual Basic form that you are

deregistering.

Returns
Nothing.

Usage
The vxBase Task-Window manager can keep track of up to 96 task-

window-select area combinations. vxWindowDereg is used to ensure
that all references to this database in this window are removed when
the form is closed. Always issue this command in your FORM_UNLOAD
procedure after closing any databases. It will ensure that the Task
manager does not overflow.

See the discussion under "Multitasking and Multiuser
Considerations" for more information.

Example
 If CustReturn <> BROWSE_USER Then
 j% = vxSelectDbf(vxClientDbf)
 j% = vxClose()
 j% = vxSelectDbf(vxStateDbf)
 j% = vxClose()
 vxWindowDereg (VXFORM3.hWnd)
 VXFORM1.OpenVx.Enabled = TRUE
 VXFORM1.PackFiles.Enabled = TRUE
 VXFORM1.TestMEmo.Enabled = TRUE
 End If

See Also
vxSelectDbf

vxBase Page 200

vxWrite

Declaration
Declare Function vxWrite Lib "vxbase.dll" () As Integer

Purpose
Write the contents of the current record buffer to disk.

Parameters
None.

Returns
TRUE if the operation was successful or FALSE if not.

Usage
Record fields are changed with the vxReplxxx functions. These

changes occur internally in a record memory buffer. The contents of
that buffer are written out whenever another record operation occurs
(such as vxGo, vxSkip, vxTop, etc.) or when the file is closed.

vxWrite explicitly writes the record as soon as the replacements are
complete. In a multiuser environment, always use vxWrite to write the
record contents as soon as possible after changes have been made,
and then unlock the file to make the record available to other users.

Example
 If CustReturn = BROWSE_ADD Then
 j% = vxAppendBlank()
 Else
 vxGo(SaveRec&)
 End If

 Call vxReplString("a_code", (CustCode.text))
 Call vxReplString("a_name", (CustName.text))
 Call vxReplDate("a_cdate", CDate$)
 Call vxReplDate("a_rdate", RDate$)
 j% = vxWrite()
 j% = vxUnlock()

vxBase Page 201

vxZap

Declaration
Declare Function vxZap Lib "vxbase.dll" () As Integer

Purpose
Physically delete all of the records in the file.

Parameters
None.

Returns
TRUE if the operation was successful and FALSE if not.

Usage
Would normally be used to delete the contents of a permanent

batch file after the batch records have been appended to a master file.

Ensure that all index files associated with the file are open. The file
is reindexed after the vxZap (i.e., the index files are cleaned out as
well).

Multiuser Considerations
The file and all of its index files are locked for the duration of the

operation.

Example
 TrMasterDbf% = vxUseDbf("Transmas.dbf")
 TrMasterNtx% = vxUseNtx("Transmas.ntx")
 j% = vxSelectDbf(TrMasterDbf%)
 vxAppendFrom("Transbat.dbf")
 j% = vxClose() ' close master file

 ' reopen transaction batch because the From
 ' file is closed by vxAppendFrom
 ' --
 TransDbf% = vxUseDbf("Transbat.dbf")
 TransNtx% = vxUseNtx("Transbat.ntx")
 j% = vxDbfSelect(TransDbf%)
 j% = vxZap() ' clear the batch

See Also

vxDeleteRange
vxPack

vxBase Page 202

Error Messages
150 Arithmetic overflow

Numeric field not long enough to hold the result of an xBase
arithmetic expression.

200 Unable to evaluate expression.
One or more errors found in xBase expression string. Unable to
continue.

230 Logical values ynYNtfTF only allowed.
vxBrowse onscreen edit of logical field. Characters shown above

are the only ones allowed.

302 Close active join links before closing this window.
Windows created with the JOIN browse menu item must be closed

before the main window.

305 Active browse tables. vxCloseAll illegal.
All active browse tables for this task must be closed before the files

may be closed.

340 Create database error
Either a DOS error (e.g., out of disk space) or an error in the field

structure passed to the vxCreateDbf function.

501 Cannot edit result of expression.
Attempt made to onscreen edit a vxBrowse column that is the

result of an xBase expression rather than a field.

502 Cannot edit memo with onscreen editor
Attempt made to onscreen edit a memo field displayed with

vxBrowse. Use vxMemoEdit or vxMemoRead/vxReplMemo instead.

504 Field Edit not allowed on joined windows.
vxBrowse onscreen edit of fields only allowed on the parent window

originating the first join link.

505 Only one active field edit allowed.
Finish the first onscreen edit before proceeding to another.

550 Expression length error
vxBase could not evaluate an expression because the return length

is zero.

vxBase Page 203

555 Expression too long
xBase expression length is limited to 127 characters.

560 Expression type check error
Mismatched data type within xBase expression. Comparisons

require same data type on either side of the relational operator.
Functions require set data type (e.g., SUBSTR() takes a character
value).

600 File creation error
DOS could not create the file. Either disk space problem or network

security violation.

610 File lock error
DOS could not lock the requested record bytes.

620 File open error
File probably does not exist. Is the path specification correct?

625 File positioning error
DOS could not position its read/write pointer to a valid location in

the file. Record number may be larger than the number of records in
the file.

640 File read error
DOS could not read the file. Either a disk error occurred or there

was a network security violation.

670 File unlock error
DOS could not unlock the requested record bytes. DOS internal

error.

680 File write error
DOS could not write to the file. Either a disk problem, out of space,

or a network security violation.

690 Field replace type mismatch
The data type of the replacement data does not match the defined

field type.

694 From file cannot be found
vxAppendFrom could not find the file it is supposed to append data

from.

900 Incomplete expression
vxBase Page 204

xBase expression is incomplete or unsupported.

904 Index close error
DOS could not close the index file. Could be due to an invalid index

select area.

908 Index corrupted
vxBase detected a corrupted index. Use vxReindex to repair.

912 Index key does not exist
An index key for a specified record does not exist. The index is

probably out of date and may be corrected with vxReindex.

914 Out of memory in index sort
The file is too large to index with vxBase. Try cutting down the

number of key elements.

918 Internal index invalid key pointer
Destroy the index and try vxReindex.

920 Internal index block size error
Destroy the index and try vxReindex.

922 Internal index node position error
Destroy the index and try vxReindex.

924 Internal index read error
Destroy the index and try vxReindex.

926 Internal index root seek error
Destroy the index and try vxReindex.

928 Internal index skip error
Destroy the index and try vxReindex.

930 Internal index leaf size error
Destroy the index and try vxReindex.

932 Invalid record number. Record not written!
The contents of the record buffer cannot be written to the specified

location because that record does not exist. New records require
vxAppendBlank to create an empty record.

934 File has zero length
DOS directory entry error. File was not closed properly.

vxBase Page 205

935 Invalid column index
vxTableField column index is out of the range specified by

vxTableDeclare.

936 Invalid date
Date passed back to vxBase cannot be translated into an xBase

date, or a date entered into a vxBrowse onscreen edit of a date field
was invalid.

938 Invalid Dbf Area
Attempt was made to access a select area that does not contain a

valid database.

940 Invalid number of delimiters
xBase expression evaluation error. Mismatched parentheses or

quotation marks.

942 Invalid field number
A relative field access cannot be completed because the field number
is greater than vxFieldCount.

944 Invalid field name
The referenced field could not be found in the current select area. If

multiple windows are present on the screen, or multiple select areas
are being used in one form's logic, vxBase may have changed the
select area in response to a user transparent message passed to Visual
Basic from Windows. If the field name is spelled correctly, try inserting
an explicit vxSelectDbf in front of the offending field reference.

946 Invalid Index Area
The index select area passed to a vxBase function is invalid.

948 Invalid record length
Maximum record length is 32666.

952 Invalid memo file name
A .dbt file could not be found that matches the name of the .dbf.

956 Invalid number in expression
An xBase expression element contains an invalid number (e.g.,

negative number as index to SUBSTR())

960 Invalid operator
An xBase expression contains an unrecognized operator, or an

vxBase Page 206

operator that does not work on the data types involved (e.g., 5 $
NumField is invalid because the "is contained in" operator only works
on character fields).

964 Incorrect number of parameters
An xBase function was passed the wrong number of parameters

(e.g., LEFT(FieldName) is invalid because a number must follow the
FieldName).

970 Invalid record number on vxGo
The record number is not within the file range (negative or greater

than that returned by vxBottom).

975 Invalid registration number
The shareware license number entered is invalid. Try again or call

to confirm the number issued.

vxBase Page 207

980 Invalid seek. No index open.
vxSeek only allowed on indexed files.

984 Invalid select area
The select area sepcified does not contain a valid database

descriptor block.

990 Invalid date format expression
An xBase expression evaluation could not decipher the data format

contained within the expression.

1000 No records found that match join key.
User message. The record pointer in the vxBrowse master window

was moved to a record that has no matching records in the joined file.
Information only.

1100 Key does not match expression
The key in the index does not match the expression that the index

was built with. If a file structure is modified, and the type of a field that
is an element in a key expression changes, then the index becomes
invalid. Rebuild the index with vxCreateNtx.

1110 Key max length exceeded (100 chars)
The maximum length of a key is 100 characters.

1120 Key must evaluate as a string
vxBase keys must evaluate as strings. Use the STR() function to

convert numeric values to strings, and the DTOS() function to convert
dates to strings.

1300 Windows memory allocation error
Windows could not allocate the requested memory. Buy more.

1305 Memory deallocation error
A memory handle has become invalid for some reason. A UAE will

usually occur before we ever get this message (Windows 3.0).

1307 Memo max length (32767) exceeded
The maximum length of a memo is 32767 (signed integer max).

1310 Memo type not supported
Only Clipper or dBase III type memo files are supported by vxBase.

1315 Memo write error
DOS error or network security violation.

vxBase Page 208

1320 String delimiter missing
xBase expression string delimiters are double or single quotes.

They must be matched.

1350 Must declare table before vxTableField
vxTableDeclare must be issued on the selected database before the

fields in the table can be defined.

1400 Expression must evaluate as Character string.
Key expessions passed to vxCreateNtx must evaluate as character

strings. See error code 1120 above.

1406 Expression must evaluate as logical TRUE or FALSE.
xBase expressions to be used as filters must evaluate as logical

results.

1409 No database currently selected
Field references and file statistical references require an open,

selected database.

1412 No browse handles available
Up to eight vxBrowse windows may be open at one time (for all

active tasks).

1415 No index active
Attempt made to perform an index function (e.g., vxReindex) while

no index was active.

1418 No records found that pass filter.
Information only. vxBrowse reports that there are no records that

qualify for display given the current filter.

1420 No matching fields
An attempt was made to vxAppendFrom a file that contains no

matching field names in the currently selected database.

1422 Cannot allocate memory for memo edit
Not enough memory to edit the memo. At least 32767 bytes must

be free.

1424 Edit control out of space.
A memo was read into an edit control (vxMemoEdit) that is not

large enough to hold the memo.

vxBase Page 209

1430 Search string not found.
Information only. A search string entered in the Query Search

vxBrowse menu item could not be found.

1436 Not a memo field!
An attempt was made to pass a field name to a memo function that

is not a memo type.

vxBase Page 210

1442 Not an NTX format index
Invalid index format. NDX and CDX files are not supported in this

version of vxBase.

1448 Not an xBase database
The requested file open was not performed because the database

header was not a dBase III or Clipper type file. dBase II and dBase IV
file formats are not supported.

1450 Number of columns required
vxTableDeclare requires the number of columns that will be

contained in the vxBrowse table.

1454 Numbers only allowed.
Onscreen edit of a numeric field error message if a non-numeric

character was entered.

1500 Out of memory
Self explanatory.

1602 Internal Pack Error
We may have run out of disk space in the pack. The database could

be corrupted.

1620 Parentheses mismatched in expression
Self expanatory.

1630 Sign must be in first position
If a sign is entered into a numeric field with the vxBrowse onscreen

editor, it must precede the numeric portion of the field.

1650 Printer error!
Self explanatory.

1900 Record skip error
Should never happen. If it does, the database is probably

corrupted.

1950 Too many params in expression
The xBase expression is too complex to evaluate. Simplify and try

again or call for help.

2002 Task list overflow!
The vxBase Task manager may contain up to 96 task-window-select

area entries. Use vxWindowDereg in your FORM_UNLOAD procedure to
vxBase Page 211

deregister windows when they are closed.

vxBase Page 212

2004 Too many decimals
vxBrowse onscreen edit of a numeric field found too many decimal

points (e.g., 34.56.7).

2010 Too many signs
vxBrowse onscreen edit of a numeric field found too many signs

(e.g., -34.56-)

2050 Type mismatch
Attempt to compare apples to oranges in an xBase expression or a

wrong data type was used as a parameter to an xBase function.

2100 Unsupported function in expression
vxBase does support this function. Request its addition via

Compuserve if you absolutely must have it.

2120 User aborted print
Information only. User cancelled print job (either memo print or

vxBrowse print).

vxBase Page 213

Software License Agreement

vxBase is not and never has been public domain software, nor is it
free software.

The software product and user's manual are copyrighted and all
rights are reserved by Comsoft Inc.

Non-licensed users are granted a limited license to use vxBase on a
thirty day trial basis for the purpose of determining whether vxBase is
suitable for their needs. The use of vxBase beyond the thirty day trial
period requires registration and the issuing of a license number. The
use of unlicensed copies of vxBase beyond the thirty day evaluation
period by any person, business, corporation, government agency, or
any other entity is strictly prohibited.

A license permits a user to use vxBase on any single computer, or,
in a LAN environment, one copy may be installed on one server and
this copy may be shared among the workstations connected to the LAN
that are under the same roof as the LAN server.

Licensed users may use the program on different computers, but
may not use the program on more than one computer at the same
time.

No one may modify or patch the vxBase files in any way, including
but not limited to decompiling, disassembling, or otherwise reverse
engineering the program.

A limited license is granted to copy and distribute vxBase for the
trial use of others, subject to the above limitations, and to those below:

(1) vxBase must be copied in unmodified form, complete with the
file containing this license information.

(2) vxBase may not be distributed in licensed form to any person
using an application written in Visual Basic that makes use of the
vxBase function calls. It MUST be distributed as an unlicensed copy
except as noted under Developer Distribution License below.

(3) No fee, charge, or other compensation may be requested or
accepted for distributing vxBase, except as follows:

 (a) operators of electronic bulletin board systems may make
vxBase Page 214

vxBase available for downloading. A time-dependent charge for the
use of the bulletin board is permitted so long as there is no specific
charge for the download of any vxBase files.

 (b) vendors of Shareware may distribute vxBase, subject to the
above conditions, and may charge a disk duplication and handling fee,
not to exceed ten dollars.

Developer Distribution License
A Developer Distribution License may be granted to developers in

consideration of the payment of $295.00 U.S. (less the shareware
registration fee if one has been paid). This license allows the developer
to distribute a special run-time only version of vxbase.dll to end users
for their use with the developer's application. The run-time version of
vxbase.dll plus a printed copy of the vxBase manual will be forwarded
to any developer who pays the Developer Distribution License fee. The
run-time version of vxbase.dll may be distributed in unlimited
quantities by the developer who has been granted such a license. The
run-time version of vxbase.dll is free of all nagware and has been
disabled for use in Visual Basic Design mode.

vxBase Page 215

Limited Warranty

Comsoft Inc. guarantees your satisfaction with this product for a
period of sixty days from the date of original purchase. If you are
dissatisfied with vxBase within that time period, return the package in
saleable condition to Comsoft Inc. for a full refund.

Comsoft Inc. warrants that all disks provided are free from defects
in material and workmanship, assuming normal use, for a period of
sixty days from the date of purchase.

Comsoft Inc. warrants that vxBase will perform in substantial
compliance with the documentation supplied with the software
product. If a significant defect in the product is found, the Purchaser
may return the product for a refund. In no event will such a refund
exceed the purchase price of the product.

The product and all updates are provided on an "as is" basis
without warranty of any kind, express or implied, except as stated
above including, but not limited to the implied warranties of
merchantibility or fitness for a particular purpose. The entire risk as to
the selection, quality, results, and performance of the product is with
the Licensee. Should the product prove defective, then the Licensee
(and not Comsoft or its dealer) assumes all liability and expense
incurred as a result thereof. Some jurisdictions do not allow the
exclusion of certain implied warranties so in such jurisdictions, the
above exclusion of implied warranties may not apply to you. The
limited warranty gives you specific legal rights. You may also have
other rights which vary from jurisdiction to jurisdiction.

Comsoft Inc. shall have no liability or responsibility to you or to any
other person or entity with respect to any liability, loss or damage
caused or alleged to be caused directly or indirectly by the product or
your use, misuse or inability to use the product, including but not
limited to, any interruption of service, loss of business, anticipatory or
actual profits or consequential damages resulting from the use, misuse
or inability to use the product.

Comsoft Inc. does not warrant that the functions contained in the
product or updates will meet your requirements.

Use of this product for any period of time constitutes your
acceptance of this agreement and subjects you to its contents.

vxBase Page 216

vxBase Order Form
 Company: __

 Name: __

 Address: __

 City: ____________________ State/Prov: ___________

Postal Code: ______________ Phone: ______________________

 Fax: _______________

 Disk Size: 3-1/2" _______ 5-1/4" _______ (check one)

 Developer: _______ End User: _____ (check one)

 ____ copies of vxBase @ $49.95 US ea: _________

 ____ copies of DataWorks @ $49.95 US ea: _________

 Foreign Air Shipping @ $15.00 US: _________
 (except U.S. & Canada)

 Developer Distribution License @ $295 US: _________

 Canadian Orders add 7% G.S.T. _________
 (GST# R101083020)
 Total: _________

Enclose check or money order for the total amount payable to
Comsoft Inc. Credit card customers, please enter the information
below:

 Visa: _________ Mastercard: _____ (check one)

 Card Number: __

Expiration Date: __

 Signature: __

Mail, phone, or fax your order to:
Comsoft Inc.

#208, 10335 - 172 Street
Edmonton, Alberta, Canada

T5S 1K9
Phone (403) 489-5994

Fax (403) 486-4335

vxBase Page 217

